咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 20 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 9 篇 理学
    • 3 篇 物理学
    • 2 篇 数学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 2 篇 生物学
  • 5 篇 医学
    • 3 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...

主题

  • 34 篇 encoder-decoder ...
  • 9 篇 deep learning
  • 4 篇 decoding
  • 3 篇 semantic segment...
  • 3 篇 training
  • 2 篇 uncertainty quan...
  • 2 篇 super-resolution
  • 2 篇 blind deblurring
  • 2 篇 task analysis
  • 2 篇 generative adver...
  • 2 篇 joint tasks
  • 2 篇 image captioning
  • 2 篇 transformers
  • 2 篇 image segmentati...
  • 2 篇 u-net
  • 2 篇 semantics
  • 2 篇 parallel branche...
  • 2 篇 medical image se...
  • 2 篇 convolutional ne...
  • 1 篇 ct volumes

机构

  • 3 篇 sichuan univ col...
  • 2 篇 natl taiwan univ...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ pos...
  • 2 篇 natl taiwan univ...
  • 2 篇 temple univ dept...
  • 1 篇 qualcomm technol...
  • 1 篇 riken riken ctr ...
  • 1 篇 de la salle univ...
  • 1 篇 tech univ denmar...
  • 1 篇 jd ai res 8 beic...
  • 1 篇 school of softwa...
  • 1 篇 indian inst tech...
  • 1 篇 shenasa ai tehra...
  • 1 篇 univ minnesota 2...
  • 1 篇 beihang univ sch...
  • 1 篇 towson univ dept...
  • 1 篇 remote sensing t...
  • 1 篇 univ sci & techn...
  • 1 篇 south westphalia...

作者

  • 2 篇 yao ting
  • 2 篇 hua kai-lung
  • 2 篇 guo jixiang
  • 2 篇 latecki longin j...
  • 2 篇 tan daniel stanl...
  • 2 篇 wu xiaofu
  • 2 篇 yi zhang
  • 2 篇 pan yingwei
  • 2 篇 zhou quan
  • 2 篇 mei tao
  • 2 篇 he tao
  • 2 篇 li yehao
  • 2 篇 kang bin
  • 2 篇 zhang suofei
  • 1 篇 wang yiming
  • 1 篇 kalviainen heikk...
  • 1 篇 zortea maciel
  • 1 篇 ghamisi pedram
  • 1 篇 ilao joel
  • 1 篇 hwang kao-shing

语言

  • 32 篇 英文
  • 1 篇 其他
检索条件"主题词=encoder-decoder networks"
34 条 记 录,以下是1-10 订阅
排序:
encoder-decoder networks for Analyzing Thermal and Power Delivery networks
收藏 引用
ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS 2023年 第1期28卷 1-27页
作者: Chhabria, Vidya A. Ahuja, Vipul Prabhu, Ashwath Patil, Nikhil Jain, Palkesh Sapatnekar, Sachin S. Univ Minnesota 200 Union St SE Minneapolis MN 55455 USA Qualcomm Technol Inc Carina West Tower Marathalli Outer Ring Rd Doddan Bengaluru 560037 Karnataka India
Power delivery network (PDN) analysis and thermal analysis are computationally expensive tasks that are essential for successful integrated circuit (IC) design. Algorithmically, both these analyses have similar comput... 详细信息
来源: 评论
Uncertainty quantification for goal-oriented inverse problems via variational encoder-decoder networks
收藏 引用
INVERSE PROBLEMS 2024年 第7期40卷 075010-075010页
作者: Afkham, Babak Maboudi Chung, Julianne Chung, Matthias Tech Univ Denmark Dept Appl Math & Comp Sci DTU Compute Lyngby Denmark Emory Univ Dept Math Atlanta GA 30322 USA
In this work, we describe a new approach that uses variational encoder-decoder (VED) networks for efficient uncertainty quantification for goal-oriented inverse problems. Contrary to standard inverse problems, these a... 详细信息
来源: 评论
Learning From Architectural Redundancy: Enhanced Deep Supervision in Deep Multipath encoder-decoder networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL networks AND LEARNING SYSTEMS 2022年 第9期33卷 4271-4284页
作者: Luo, Ying Lu, Jinhu Jiang, Xiaolong Zhang, Baochang Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China Beihang Univ Shenyuan Honors Coll Beijing 100191 Peoples R China Beihang Univ Sch Automat Sci & Elect Engn State Key Lab Software Dev Environm Beijing 100191 Peoples R China Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100191 Peoples R China Alibaba Grp Beijing 100102 Peoples R China Beihang Univ Inst Artificial Intelligence Beijing 100191 Peoples R China
Deep encoder-decoders are the model of choice for pixel-level estimation due to their redundant deep architectures. Yet they still suffer from the vanishing supervision information issue that affects convergence becau... 详细信息
来源: 评论
Concrete roadway crack segmentation using encoder-decoder networks with range images
收藏 引用
AUTOMATION IN CONSTRUCTION 2020年 120卷
作者: Zhou, Shanglian Song, Wei Univ Alabama Dept Civil Construct & Environm Engn Tuscaloosa AL 35487 USA
Recently, researchers have utilized DCNN for pixel-wise crack classification through semantic segmentation. Nevertheless, some issues in current DCNN-based roadway crack segmentation are yet to be fully addressed. For... 详细信息
来源: 评论
Timber Tracing with Multimodal encoder-decoder networks  18th
Timber Tracing with Multimodal Encoder-Decoder Networks
收藏 引用
18th international Conference on Computer Analysis of Images and Patterns (CAIP)
作者: Zolotarev, Fedor Eerola, Tuomas Lensu, Lasse Kalviainen, Heikki Haario, Heikki Heikkinen, Jere Kauppi, Tomi Lappeenranta Lahti Univ Technol LUT Sch Engn Sci Dept Computat & Proc Engn Machine Vis & Pattern Recognit Lab POB 20 Lappeenranta 53851 Finland Finnos Oy Tukkikatu 5 Lappeenranta 53900 Finland
Tracking timber in the sawmill environment from the raw material (logs) to the end product (boards) provides various benefits including efficient process control, the optimization of sawing, and the prediction of end-... 详细信息
来源: 评论
A DEEP encoder-decoder networks FOR JOINT DEBLURRING AND SUPER-RESOLUTION
A DEEP ENCODER-DECODER NETWORKS FOR JOINT DEBLURRING AND SUP...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Xinyi Wang, Fei Dong, Hang Guo, Yu Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian Shaanxi Peoples R China
In this paper, we propose an end-to-end convolution neural network (CNN) to restore a clear high-resolution image from a severely blurry image. It's a highly ill-posed problem and brings tremendous challenges to s... 详细信息
来源: 评论
A Deep encoder-decoder networks for Joint Deblurring and Super-Resolution
A Deep Encoder-Decoder Networks for Joint Deblurring and Sup...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Xinyi Zhang Fei Wang Hang Dong Yu Guo Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China
In this paper, we propose an end-to-end convolution neural network (CNN) to restore a clear high-resolution image from a severely blurry image. It's a highly ill-posed problem and brings tremendous challenges to s... 详细信息
来源: 评论
Anchor Ball Regression Model for large-scale 3D skull landmark detection
收藏 引用
NEUROCOMPUTING 2024年 567卷
作者: He, Tao Xu, Guikun Cui, Li Tang, Wei Long, Jie Guo, Jixiang Sichuan Univ Coll Comp Sci Machine Intelligence Lab Chengdu 610065 Peoples R China West China Hosp Stomatol Dept Oral & Maxillofacial Surg Chengdu 610041 Peoples R China Army Med Univ Daping Hosp Dept Oral & Maxillofacial Surg Chongqing 400042 Peoples R China
Recent deep learning models have exhibited impressive performance in the area of 3D skull landmark detection, but most of them aimed to detect a fixed number of landmarks. This paper focuses on automatically detecting... 详细信息
来源: 评论
Creating an AI fashioner through deep learning and computer vision
收藏 引用
EVOLVING SYSTEMS 2024年 第3期15卷 717-729页
作者: Balim, Caner Ozkan, Kemal Afyon Kocatepe Univ Sandikli Vocat Sch Higher Educ Dept Comp Comp Programming Afyonkarahisar Turkiye Eskisehir Osmangazi Univ Fac Engn & Architecture Dept Comp Engn Eskisehir Turkiye
Fashion is a multibillion-dollar industry that concerns many people both socially and culturally. Thanks to social networks, there is a lot of data about the fashion industry on the internet. This has led researchers ... 详细信息
来源: 评论
Learning and Adaptation From Minimum Samples With Heterogeneous Quality: An Investigation of Image Segmentation networks on Natural Dataset
收藏 引用
IEEE ACCESS 2023年 11卷 47040-47052页
作者: Variyar, V. V. Sajith Sowmya, V. Sivanpillai, Ramesh Brown, Gregory K. Amrita Vishwa Vidyapeetham Ctr Computat Engn & Networking CEN Coimbatore 641112 India Univ Wyoming Wyoming GIS Ctr Sch Comp Laramie WY 82071 USA Univ Wyoming Dept Bot Laramie WY 82071 USA
Training deep learning-based image segmentation networks require large number of samples of adequate quality. However, obtaining large number of samples is not possible in certain domains. Recent approaches use augmen... 详细信息
来源: 评论