在强脉冲噪声干扰背景中,核递归最小二乘(Kernel Recursive Least Square,KRLS)算法和核递归最大相关熵(Kernel Recursive Maximum Correntropy,KRMC)算法对非线性信号预测性能严重退化,对此提出一种核递归最小平均P范数(Kernel Recursi...
详细信息
在强脉冲噪声干扰背景中,核递归最小二乘(Kernel Recursive Least Square,KRLS)算法和核递归最大相关熵(Kernel Recursive Maximum Correntropy,KRMC)算法对非线性信号预测性能严重退化,对此提出一种核递归最小平均P范数(Kernel Recursive Least Mean P-norm,KRLMP)算法。首先运用核方法将输入数据映射到再生核希尔伯特空间(Reproducing Kernnel Hilbert Space,RKHS)。其次基于最小P范数准则和正则化方法,推导得到自适应滤波器的最佳权向量,其降低了非高斯脉冲和样本量少的影响。然后利用矩阵求逆理论,推导得到矩阵的递归公式。最后利用核技巧得到在输入空间高效计算的滤波器输出和算法的迭代公式。α稳定分布噪声背景下Mackey-Glass时间序列预测的仿真结果表明:KRLMP算法与KRLS算法和KRMC算法相比,抗脉冲噪声能力强,鲁棒性好。
针对在低信噪比(SNR)情况下稀疏度欠估计和高信噪比情况下稀疏度过估计的问题,提出了一种基于Gerschgorin理论稀疏度估计的宽带频谱感知算法。首先,该算法利用Gerschgorin理论分离信号圆盘与噪声圆盘得到稀疏度估计值;然后,利用正交匹配追踪(OMP)算法得到频谱支撑集;最后,完成宽带频谱感知。仿真结果表明,所提算法、AIC-OMP算法和MDL-OMP算法频谱感知的检测概率达到95%信噪比分别需要4.6 d B、8.5 d B和9.7 d B;所提算法频谱感知的虚警概率在信噪比大于13 d B时趋近于0,明显低于BPD-OMP和GDRI-OMP算法的虚警概率,因此,所提算法对于压缩感知(CS)的信号稀疏度估计兼顾了低信噪比和高信噪比时的稀疏度估计性能,频谱感知性能优于AIC-OMP算法、MDL-OMP算法、BPD-OMP算法和GDRI-OMP算法。
暂无评论