随着云计算的发展与普及,云计算环境下的安全问题日益突出.云取证技术作为事后追责与惩治技术手段,对维护云计算环境安全具有重大意义.云取证技术研究发展尚处于早期,云取证面临电子证据不完整、取证开销较大、取证过程智能化不足等难题.为缓解这些问题,提出一种基于软件定义安全(software defined security,SDS)和云取证趋势分析的智能云取证方法.首先,提出一种基于软件定义安全的云取证架构,实现云网络与云计算平台协同实时取证.其次,提出基于隐Markov模型的云取证趋势分析算法,实现云取证架构中的智能取证策略决策和智能取证资源调度.实验结果表明:相较于单独的网络取证与云计算平台取证,该方法取证能力提高至91.6%,而取证开销则介于两者之间.该方法对云服务商提供云取证服务具有广泛的借鉴意义.
随着移动互联网与社会网络的深度融合,基于位置服务(Location Based Service,LBS)的社交媒体应用更加流行,成为地理社会网络(Geo-Social Networks,GSN)的研究重点。基于位置信息的社会网络(Location Based Social Network,LBSN)由于具...
详细信息
随着移动互联网与社会网络的深度融合,基于位置服务(Location Based Service,LBS)的社交媒体应用更加流行,成为地理社会网络(Geo-Social Networks,GSN)的研究重点。基于位置信息的社会网络(Location Based Social Network,LBSN)由于具有时空特性,其海量数据可视化不同于传统信息可视化,必须结合其地理信息特征进行表达。该文以GSN中抽取出的海量时空数据为分析对象,从LBSN时空数据抽取、海量时空数据可视化等方面进行综述,对地理社会网络时空数据交互可视化分析技术开展研究,以期能够实现比较方便、快速、直接地从地理社会网络的海量数据中提取出有用、可靠、可知识化的综合信息,并通过信息可视化方式进行直观表达、展示与分析。
暂无评论