本文通过深入剖析陕西省商洛市新质生产力培育过程中的政策支持及现实困境,结合其研究现状与构成要素,构建了区域新质生产力培育综合评价指标体系。以2019~2023年商洛市国民经济和社会发展数据为支撑,采用灰色关联分析法和逼近理想解排序法(TOPSIS法)对城市科技创新培育新质生产力的进程进行了评估;基于数据响应的发展现状,从提升科技创新能力、革新生产要素、产业深度转型、优化生产模式等方面给出了促进商洛市高质量发展的策略建议,旨在为商洛市新质生产力培育提供策略参考。In this paper, by deeply analyzing the policy support and practical difficulties in the process of cultivating new quality productivity in Shangluo City, Shaanxi Province, and combining its research status and constituent elements, a comprehensive evaluation index system for regional new quality productivity cultivation was constructed. Based on the national economic and social development data of Shangluo City from 2019 to 2023, this study evaluates the process of cultivating new quality productivity through urban scientific and technological innovation using grey correlation analysis and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS method). With the help of the development status of data response, strategic suggestions are provided to promote high-quality development in Shangluo City from the aspects of enhancing scientific and technological innovation capabilities, innovating production factors, deepening industrial transformation, and optimizing production models, aiming to provide strategic references for cultivating new quality productivity in Shangluo City.
针对异构数据集下的不均衡分类问题,从数据集重采样、集成学习算法和构建弱分类器3个角度出发,提出一种针对异构不均衡数据集的分类方法HVDM-Adaboost-KNN算法(heterogeneous value difference metric-Adaboost-KNN),该算法首先通过聚...
详细信息
针对异构数据集下的不均衡分类问题,从数据集重采样、集成学习算法和构建弱分类器3个角度出发,提出一种针对异构不均衡数据集的分类方法HVDM-Adaboost-KNN算法(heterogeneous value difference metric-Adaboost-KNN),该算法首先通过聚类算法对数据集进行均衡处理,获得多个均衡的数据子集,并构建多个子分类器,采用异构距离计算异构数据集中2个样本之间的距离,提高KNN算法的分类准性能,然后用Adaboost算法进行迭代获得最终分类器。用8组UCI数据集来评估算法在不均衡数据集下的分类性能,Adaboost实验结果表明,相比Adaboost等算法,F1值、AUC、G-mean等指标在异构不均衡数据集上的分类性能都有相应的提高。
暂无评论