针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像...
详细信息
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。
暂无评论