为解决一些决策树受到数据噪声等因素的影响,导致它们对随机森林聚类产生有限甚至负面贡献这一问题,提出一种基于聚类集成选择的随机森林聚类方法(random forest clustering method based on cluster ensemble selection,RFCCES)。将每...
详细信息
为解决一些决策树受到数据噪声等因素的影响,导致它们对随机森林聚类产生有限甚至负面贡献这一问题,提出一种基于聚类集成选择的随机森林聚类方法(random forest clustering method based on cluster ensemble selection,RFCCES)。将每一棵决策树视为一个基聚类器,根据基聚类器集合的稳定和不稳定性设计两种不同的聚类集成选择方法,将评估单个决策树对随机森林的增益问题,转化为基聚类器对最终的聚类集成结果的增益问题。该算法与5种对比方法在10个数据集上进行比较,实验结果验证了RFCCES的独特优势和整体有效性。
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。
暂无评论