全球心理健康问题形势严峻,由于心理健康服务的从业人员不足,遭受心理健康困扰的人并不总是能获得专业的心理健康服务.检索式心理健康社区自动问答可以快速地为需要心理健康服务的人提供相应的信息自助服务.与传统检索式社区问答中的文本匹配不同,在匹配支持帖和求助帖时,需要考虑2种不同层面的匹配准则:语义层面和心理层面.为了解决该问题,提出融合角色心理画像的2阶段文本匹配模型(two-stage text matching model integrating characters’mental portrait,T2CMP),该模型引入心理特征用于构建角色心理画像,从而辅助模型理解文本心理层面的内容和匹配关系.同时为了提升检索效率以及减少大量负样例带来的噪声问题,将文本匹配任务拆分为2阶段的序列型子任务.首先针对每条求助帖,使用基于语义的筛选模型甄别出候选支持帖;然后依据用户的角色心理画像,使用多层注意力机制将其与语义信息有效融合,提高模型的总体效果.在MHCQA数据集上的实验结果显示,T2CMP比现有优秀算法拥有更高的F1值.
在由锚节点和目标点组成的节点定位网络中,传统的隐私保护求和(privacy-preserving summation,PPS)算法要求所有参与通信的节点均生成并传输1组干扰矩阵,导致了非必要的通信开销.为打破该局限,提出了k型隐私保护求和(privacy-preserving summation with k,PPS-k)算法,随机指定k个节点生成和传输干扰矩阵,干扰矩阵的生成和传输过程可通过改变k值动态调整.PPS-k兼顾隐私保护能力与通信量限制,具有较高的灵活性.之后,将PPS-k应用于具体的定位场景,提出对应的隐私保护节点定位协议.提出隐私保护率的概念,利用估计其他节点隐私信息所需要的额外方程数与隐私信息中未知量个数之比评估隐私保护能力.与传统的评估标准相比,消除了隐私信息维度对算法隐私保护性能评估结果的影响.仿真结果验证了理论分析的有效性.
暂无评论