Based on an analysis of symmetry, the dispersion relations near the Ai valley in strained Si1-x Gex (0≤x〈0.45)/ (001), (111), (101)Si are derived using the KP method with perturbation theory. These relations...
详细信息
Based on an analysis of symmetry, the dispersion relations near the Ai valley in strained Si1-x Gex (0≤x〈0.45)/ (001), (111), (101)Si are derived using the KP method with perturbation theory. These relations demonstrate that △^i levels in strained Si1-x Gex are different from the △1 level in relaxed Si1-x Gex, while the longitudinal and transverse masses (m1^* and mt^* ) are unchanged under strain. The energy shift between the △^i levels and the △1 level follows the linear deformation potential theory. Finally,a description of the conduction band (CB) edge in biaxially strained layers is given.
Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - ...
详细信息
Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - 1.02eV with the electron capture cross section of 7.0 × 10^16 and 6.0 × 10^-16 cm^2 are observed, respectively. Low-temperature photoluminescence measurements in the range of 1.4-3.4eV are also performed on the sample, which reveals the formation of two electron traps at 0.80 and 1. 16eV below the conduction band. These traps indicate that vanadium doping leads to the formation of two deep acceptor levels in 4H-SiC,with the location of 0.8±0.01 and 1. 1 ±0.08eV below the conduction band.
A band edge model in (101)-biaxial strained Si on relaxed Si1-x Gex alloy,or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that ...
详细信息
A band edge model in (101)-biaxial strained Si on relaxed Si1-x Gex alloy,or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that the [001], [001], [100], [100] valleys constitute the conduction band (CB) edge,which moves up in electron energy as the Ge fraction (x) increases. Furthermore,the CB splitting energy is in direct proportion to x and all the valence band (VB) edges move up in electron energy as x increases. In addition, the decrease in the indirect bandgap and the increase in the VB edge splitting energy as x increases are found. The quantitative data from the models supply valuable references for the design of the devices.
This paper presents a new power generation structure that can provide DC energy for passive UHF RFID with high sensitivity and high efficiency. The structure is designed with 0.18μm standard CMOS technology, includin...
详细信息
This paper presents a new power generation structure that can provide DC energy for passive UHF RFID with high sensitivity and high efficiency. The structure is designed with 0.18μm standard CMOS technology, including two charge pumps,a current reference, and a group of bias circuits. Low-voltage performance is improved thanks to the bias structure,which eliminates the threshold voltage drop and body-effect of conventional circuits. A 350mV minimum input level is required to generate a 1.5V power supply for a 100k~ load with power conversion efficiency (PCE) of 22%. PCE up to 29.8% is achieved with a 60kΩ load. Simulation results show that the new circuit is superior to conventional charge pumps.
暂无评论