行为画像技术利用无标注历史数据构建用户行为"常态",是检测企业内部威胁的有效手段。当前标签式画像方法依赖人工提取特征,多用简单统计方法处理数据,导致用户画像模型缺少细节、不够全面。提出了一种行为特征自动提取和局部全细节行为画像方法,以及一种行为序列划分和全局业务状态转移预测方法,能够较全面地刻画用户行为模式。构建了一个基于行为画像的内部威胁检测框架,将局部描写与全局预测相结合,提高了检测准确率。最后用CMU-CERT数据集进行了实验,AUC(area under curve)得分0.88,F1得分0.925,可有效应用于内部威胁检测过程中。
针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,H...
详细信息
针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,HRRP)特征辅助的JPDA算法。首先,计算量测与目标的HRRP特征相似度;然后利用特征相似度辅助JPDA算法完成波门搜索,减少可行事件的数量;最后使用特征相似度对可行事件的发生概率进行修正,进而修正量测与目标的关联概率。实验结果表明,本文算法提高了关联性能,同时还极大地提高了算法的实时性。
暂无评论