为了探索q-RO(q-rung orthopair)模糊信息系统中具备稳定决策结果的多属性群决策方法,依据多粒度概率粗糙集与MULTIMOORA(multi-objective optimization by ratio analysis plus the full MULTIplicative form)建立了一种新的q-RO模糊...
详细信息
为了探索q-RO(q-rung orthopair)模糊信息系统中具备稳定决策结果的多属性群决策方法,依据多粒度概率粗糙集与MULTIMOORA(multi-objective optimization by ratio analysis plus the full MULTIplicative form)建立了一种新的q-RO模糊多粒度计算模型,并用于求解多属性群决策问题。结合q-RO模糊概率粗糙集与多粒度粗糙集,提出了多粒度q-RO模糊概率粗糙集模型。利用离差最大化法计算属性权重与决策者权重,进一步建立了基于多粒度概率粗糙集与MULTIMOORA的q-RO模糊多属性群决策方法,该方法考虑了决策风险与容错能力,可提供稳定的决策结果。通过2个实际算例验证了所建立方法的可行性与有效性。
针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散模型的生成条件,赋予扩散模型预报的能力;其次,设计了一个新的平衡损失函数,同时保护了扩散模型的生成能力和时空信息捕捉模块对时空信息的捕捉能力;最后,基于美国国家环境预报中心的再分析数据进行预报,与现有的深度学习方法相比,所提模型预报结果的质量在均方误差(mean square error,MSE)上降低了17.3%,在均方根误差(root mean square error,RMSE)上降低了9.14%,在峰值信噪比(peak signal to noise ratio,PSNR)上提升了5.1%。改进的扩散模型能有效地捕捉时空依赖的关系,有效地进行时空序列预测,效果优于其他对比方法。
暂无评论