针对灰狼优化(Grey wolf optimization,GWO)算法在处理复杂优化问题时优化精度不高,易陷于局部最优等问题,提出了一种强化狼群等级制度的灰狼优化(GWO based on strengthening the hierarchy of wolves,GWOSH)算法。该算法为灰狼个体设...
详细信息
针对灰狼优化(Grey wolf optimization,GWO)算法在处理复杂优化问题时优化精度不高,易陷于局部最优等问题,提出了一种强化狼群等级制度的灰狼优化(GWO based on strengthening the hierarchy of wolves,GWOSH)算法。该算法为灰狼个体设置了跟随狩猎和自主探索两种狩猎模式,并根据自身等级情况来控制选择狼群的狩猎模式。在跟随狩猎模式中,灰狼个体以等级高于自身的灰狼的位置信息来指引自己到达最优解区域;而在自主探索模式中,灰狼个体会同时审视等级高于自身的灰狼的位置信息和自身位置信息,并基于这些信息自主判断猎物的位置,同时两种更新模式都将引入优胜劣汰选择规则来确保种群的狩猎方向。对12个基准测试函数进行优化的结果表明:与已有的算法相比,GWOSH算法的全局搜索能力更强,更能有效避免易早熟收敛的问题,更适用于求解高维的复杂优化问题。
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数...
详细信息
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。
暂无评论