咨询与建议

限定检索结果

文献类型

  • 838 篇 会议
  • 827 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,666 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 996 篇 工学
    • 703 篇 计算机科学与技术...
    • 576 篇 软件工程
    • 222 篇 信息与通信工程
    • 165 篇 电气工程
    • 145 篇 生物工程
    • 119 篇 控制科学与工程
    • 111 篇 电子科学与技术(可...
    • 95 篇 光学工程
    • 93 篇 生物医学工程(可授...
    • 52 篇 机械工程
    • 47 篇 仪器科学与技术
    • 45 篇 动力工程及工程热...
    • 39 篇 化学工程与技术
    • 39 篇 交通运输工程
    • 33 篇 安全科学与工程
    • 32 篇 土木工程
  • 582 篇 理学
    • 292 篇 数学
    • 171 篇 生物学
    • 154 篇 物理学
    • 93 篇 统计学(可授理学、...
    • 51 篇 地球物理学
    • 50 篇 化学
    • 42 篇 系统科学
  • 256 篇 管理学
    • 159 篇 管理科学与工程(可...
    • 110 篇 图书情报与档案管...
    • 59 篇 工商管理
  • 96 篇 医学
    • 80 篇 临床医学
    • 62 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 46 篇 法学
    • 35 篇 社会学
  • 39 篇 农学
  • 27 篇 经济学
  • 15 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 60 篇 semantics
  • 60 篇 feature extracti...
  • 49 篇 deep learning
  • 46 篇 computational mo...
  • 46 篇 training
  • 43 篇 accuracy
  • 34 篇 predictive model...
  • 32 篇 machine learning
  • 29 篇 data models
  • 26 篇 neural networks
  • 26 篇 convolution
  • 26 篇 graph neural net...
  • 25 篇 image segmentati...
  • 24 篇 task analysis
  • 24 篇 data mining
  • 21 篇 federated learni...
  • 19 篇 memory managemen...
  • 19 篇 contrastive lear...
  • 18 篇 convolutional ne...
  • 17 篇 transformers

机构

  • 100 篇 national enginee...
  • 66 篇 school of comput...
  • 58 篇 shandong provinc...
  • 51 篇 school of cyber ...
  • 46 篇 shandong enginee...
  • 45 篇 key laboratory o...
  • 37 篇 national enginee...
  • 36 篇 beijing advanced...
  • 34 篇 university of ch...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 28 篇 huazhong univers...
  • 27 篇 cluster and grid...
  • 26 篇 hubei key labora...
  • 22 篇 henan key labora...
  • 21 篇 college of compu...
  • 20 篇 engineering rese...
  • 20 篇 school of softwa...
  • 20 篇 zhejiang lab
  • 19 篇 research center ...

作者

  • 126 篇 jin hai
  • 125 篇 hai jin
  • 43 篇 xiaofei liao
  • 27 篇 liao xiaofei
  • 23 篇 hu shengshan
  • 22 篇 long zheng
  • 21 篇 haikun liu
  • 17 篇 zou deqing
  • 17 篇 yu zhang
  • 17 篇 zhao weisheng
  • 16 篇 zhang leo yu
  • 16 篇 zhang jie
  • 16 篇 yu huang
  • 15 篇 deqing zou
  • 13 篇 li yang
  • 13 篇 shutian liu
  • 13 篇 xianda hou
  • 13 篇 changhong mi
  • 13 篇 hongyan zheng
  • 13 篇 jiang xiao

语言

  • 1,543 篇 英文
  • 103 篇 其他
  • 39 篇 中文
检索条件"机构=Big Data and Intelligent Computing Research Center"
1666 条 记 录,以下是21-30 订阅
排序:
SAND: semi-automated adaptive network defense via programmable rule generation and deployment
收藏 引用
Science China(Information Sciences) 2022年 第7期65卷 121-138页
作者: Haoyu CHEN Deqing ZOU Hai JIN Shouhuai XU Bin YUAN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabCluster and Grid Computing Lab School of Computer Science and TechnologyHuazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabHubei Engineering Research Center on Big Data Security School of Cyber Science and EngineeringHuazhong University of Science and Technology Department of Computer Science University of Colorado at Colorado Springs
Cyber security is dynamic as defenders often need to adapt their defense postures. The state-ofthe-art is that the adaptation of network defense is done manually(i.e., tedious and error-prone). The ideal solution is t... 详细信息
来源: 评论
XGCN:a library for large-scale graph neural network recommendations
收藏 引用
Frontiers of Computer Science 2024年 第3期18卷 247-249页
作者: Xiran SONG Hong HUANG Jianxun LIAN Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabCluster and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China Microsoft Research Asia Beijing 100080China
1 Introduction Graph Neural Networks(GNNs)have gained widespread adoption in recommendation systems,and nowadays there is a pressing need to effectively manage large-scale graph data[1].When it comes to large graphs,G... 详细信息
来源: 评论
A hybrid memory architecture supporting fine-grained data migration
收藏 引用
Frontiers of Computer Science 2024年 第2期18卷 31-41页
作者: Ye CHI Jianhui YUE Xiaofei LIAO Haikun LIU Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabCluster and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China Department of Computer Science Michigan Technological UniversityMichigan 49931USA
Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory *** previous proposals usually... 详细信息
来源: 评论
Abnormal Clustering and Cross Slicing Transformer for Insect Fine-Grained Image Classification  2
Abnormal Clustering and Cross Slicing Transformer for Insect...
收藏 引用
2nd International Conference on Algorithm, Image Processing and Machine Vision, AIPMV 2024
作者: Mei, Aokun Huo, Hua Big Data and Computing Intelligence Engineering Technology Research Center School of Information Engineering Henan University of Science and Technology Big Data Analysis Laboratory of Henan Medical Luoyang471023 China
Insect fine-grained image classification is an application scenario in fine-grained image classification. It not only has the characteristics of small inter-class differences and large intra-class differences, but als... 详细信息
来源: 评论
P3DC:Reducing DRAM Cache Hit Latency by Hybrid Mappings
收藏 引用
Journal of Computer Science & Technology 2024年 第6期39卷 1341-1360页
作者: Ye Chi Ren-Tong Guo Xiao-Fei Liao Hai-Kun Liu Jianhui Yue National Engineering Research Center for Big Data Technology and System Wuhan 430074China Services Computing Technology and System Laboratory Wuhan 430074China Cluster and Grid Computing Laboratory Wuhan 430074China School of Computer Science and Technology Huazhong University of Science and TechnologyWuhan 430074China School of Big Data and Internet Shenzhen Technology UniversityShenzhen 518118China Department of Computer Science Michigan Technological UniversityHoughton 49931-1295U.S.A.
Die-stacked dynamic random access memory(DRAM)caches are increasingly advocated to bridge the performance gap between the on-chip cache and the main *** fully realize their potential,it is essential to improve DRAM ca... 详细信息
来源: 评论
Combining permissioned blockchain and Bayesian best-worst method for transparent supplier selection in supply chain management
收藏 引用
Science China(Technological Sciences) 2024年 第8期67卷 2579-2593页
作者: LIU JiaJun ZHANG Jie LENG JieWu Shanghai Engineering Research Center of Industrial Big Data and Intelligent System Institute of Artificial IntelligenceDonghua UniversityShanghai 201620China State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment Guangdong University of TechnologyGuangzhou 510006China
Supplier selection is an important business activity in order to realize the purchasing function in supply chain *** supplier selection process includes four stages,i.e.,bidding inviting,bidding,group decision-making,... 详细信息
来源: 评论
An Analysis Model of Learners’ Online Learning Status Based on Deep Neural Network and Multi-Dimensional Information Fusion
收藏 引用
Computer Modeling in Engineering & Sciences 2023年 第6期135卷 2349-2371页
作者: Mingyong Li Lirong Tang Longfei Ma Honggang Zhao Jinyu Hu Yan Wei College of Computer and Information Science Chongqing Normal UniversityChongqing401331China Chongqing Engineering Research Center of Educational Big Data Intelligent Perception and Application Chongqing401331China
The learning status of learners directly affects the quality of *** with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even more difficult... 详细信息
来源: 评论
bigRU-DA: Based on Improved bigRU Multi-Target data Association Method  8
BiGRU-DA: Based on Improved BiGRU Multi-Target Data Associat...
收藏 引用
8th International Conference on Computer and Communication Systems, ICCCS 2023
作者: Wu, Guangsheng Wang, Licai Hu, Xun Luo, Qibin Guo, Dongliang North China Institute of Computing Technology Big Data Research and Development Center Beijing China
Trajectory data association algorithm is an important part of multi-target tracking method. Traditional association methods require priori information such as target motion model and clutter density to conduct associa... 详细信息
来源: 评论
Automatic 3D modeling and exploration of indoor structures from panoramic imagery  24
Automatic 3D modeling and exploration of indoor structures f...
收藏 引用
2024 SIGGRAPH Asia 2024 Courses, SA Courses 2024
作者: Gobbetti, Enrico Pintore, Giovanni Agus, Marco National Research Center in High-Performance Computing Big Data and Quantum Computing Cagliari Italy Visual and Data-intensive Computing Center for Advanced Studies Research and Development in Sardinia Cagliari Italy College of Science and Engineering Hamad Bin Khalifa University Doha Qatar
Surround-view panoramic imaging delivers extensive spatial coverage and is widely supported by professional and commodity capture devices. research on inferring and exploring 3D indoor models from 360° images has... 详细信息
来源: 评论
Task Separation and Knowledge Sharing for Class Incremental Learning  5
Task Separation and Knowledge Sharing for Class Incremental ...
收藏 引用
5th International Conference on intelligent computing and Human-Computer Interaction, ICHCI 2024
作者: Zhang, Jiali Qiao, Xiaoyan School of Computer Science and Technology Shandong Technology and Business University Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China School of Mathematics and Information Science Shandong Technology and Business University Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China
Methods based on dynamically expanding architectures can effectively mitigate catastrophic forgetting in class incremental learning (CIL), but they often overlook information sharing and integration between subnetwork... 详细信息
来源: 评论