咨询与建议

限定检索结果

文献类型

  • 119 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 医学
    • 77 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
    • 3 篇 特种医学
  • 59 篇 工学
    • 48 篇 生物医学工程(可授...
    • 33 篇 光学工程
    • 32 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 30 篇 软件工程
    • 16 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 8 篇 信息与通信工程
    • 5 篇 化学工程与技术
    • 3 篇 控制科学与工程
    • 3 篇 安全科学与工程
    • 2 篇 建筑学
    • 2 篇 土木工程
  • 52 篇 理学
    • 40 篇 生物学
    • 17 篇 数学
    • 17 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
  • 9 篇 管理学
    • 7 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
    • 1 篇 教育学
  • 1 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 9 篇 magnetic resonan...
  • 5 篇 neuroimaging
  • 4 篇 deep learning
  • 3 篇 generative adver...
  • 3 篇 neurodegenerativ...
  • 3 篇 brain
  • 3 篇 aging
  • 3 篇 forecasting
  • 2 篇 alzheimer's dise...
  • 2 篇 biomarkers
  • 2 篇 medical imaging
  • 2 篇 white matter hyp...
  • 2 篇 convolution
  • 2 篇 mri
  • 2 篇 tumors
  • 2 篇 genetics
  • 2 篇 pathology
  • 1 篇 cerebral small v...
  • 1 篇 pet
  • 1 篇 gray matter volu...

机构

  • 20 篇 university of pe...
  • 18 篇 department of pa...
  • 14 篇 center for biome...
  • 14 篇 department of ra...
  • 12 篇 center for biome...
  • 11 篇 hospital of the ...
  • 11 篇 center for biome...
  • 9 篇 center for biome...
  • 9 篇 university of pe...
  • 9 篇 center for biome...
  • 8 篇 department of ne...
  • 7 篇 centre for biome...
  • 6 篇 department of ra...
  • 6 篇 hospital of the ...
  • 6 篇 department of ra...
  • 5 篇 center for biome...
  • 5 篇 artificial intel...
  • 5 篇 department of pa...
  • 4 篇 department of st...
  • 4 篇 chop philadelphi...

作者

  • 45 篇 davatzikos chris...
  • 29 篇 bakas spyridon
  • 21 篇 christos davatzi...
  • 20 篇 akbari hamed
  • 13 篇 nasrallah maclea...
  • 12 篇 kazerooni anahit...
  • 12 篇 fan yong
  • 12 篇 erus guray
  • 11 篇 ilya m. nasralla...
  • 11 篇 guray erus
  • 10 篇 david a. wolk
  • 9 篇 junhao wen
  • 9 篇 bilello michel
  • 9 篇 haochang shou
  • 8 篇 rozycki martin
  • 8 篇 sotiras aristeid...
  • 8 篇 wen junhao
  • 8 篇 habes mohamad
  • 8 篇 mamourian elizab...
  • 7 篇 doshi jimit

语言

  • 130 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Center for Biomedical Image Computing and Analytics and Department of Bioengineering"
133 条 记 录,以下是1-10 订阅
Cascaded convolutional networks for unsupervised brain tissue segmentation and bias field estimation
Cascaded convolutional networks for unsupervised brain tissu...
收藏 引用
2023 Emerging Topics in Artificial Intelligence, ETAI 2023
作者: Li, Hongming Fan, Yong Center for Biomedical Image Computing and Analytics Department of Radiology University of Pennsylvania PhiladelphiaPA19104 United States
Brain tissue segmentation from MR images is a critical step for quantifying the brain morphology in neuroimaging studies. While deep learning (DL) based brain tissue segmentation methods have achieved promising perfor... 详细信息
来源: 评论
HNAS-Reg: Hierarchical Neural Architecture Search for Deformable Medical image Registration
HNAS-Reg: Hierarchical Neural Architecture Search for Deform...
收藏 引用
IEEE International Symposium on biomedical Imaging
作者: Jiong Wu Yong Fan Department of Radiology Center for Biomedical Image Computing and Analytics Perelman School of Medicine University of Pennsylvania Philadelphia PA
Convolutional neural networks (CNNs) have been widely used to build deep learning models for medical image registration, but manually designed network architectures are not necessarily optimal. This paper presents a h...
来源: 评论
Predicting Alzheimer’s Disease and Quantifying Asymmetric Degeneration of the Hippocampus Using Deep Learning of Magnetic Resonance Imaging Data
Predicting Alzheimer’s Disease and Quantifying Asymmetric D...
收藏 引用
IEEE International Symposium on biomedical Imaging
作者: Xi Liu Hongming Li Yong Fan Department of Radiology Perelman School of Medicine Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA
In order to quantify lateral asymmetric degeneration of the hippocampus for early predicting Alzheimer’s disease (AD), we develop a deep learning (DL) model to learn informative features from the hippocampal magnetic...
来源: 评论
HNAS-REG: HIERARCHICAL NEURAL ARCHITECTURE SEARCH FOR DEFORMABLE MEDICAL image REGISTRATION
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Jiong Fan, Yong Center for Biomedical Image Computing and Analytics Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States
Convolutional neural networks (CNNs) have been widely used to build deep learning models for medical image registration, but manually designed network architectures are not necessarily optimal. This paper presents a h... 详细信息
来源: 评论
Medical image Segmentation with Domain Adaptation: A Survey
arXiv
收藏 引用
arXiv 2023年
作者: Li, Yuemeng Fan, Yong Center for Biomedical Image Computing and Analytics The Department of Radiology The Perelman School of Medicine The University of Pennsylvania PhiladelphiaPA19104 United States
Deep learning (DL) has shown remarkable success in various medical imaging data analysis applications. However, it remains challenging for DL models to achieve good generalization, especially when the training and tes... 详细信息
来源: 评论
A deep-learning based system for diagnosing multitype gastric lesions under white-light endoscopy
收藏 引用
中华医学杂志(英文版) 2025年 第4期138卷 481-483页
作者: Luo Qi Yuan Xianglei Liu Wei Chen Ou Wu Jiong Hu Bing Department of Gastroenterology and Hepatology West China Hospital Sichuan University Chengdu Sichuan China Digestive Endoscopy Medical Engineering Research Laboratory West China Hospital Sichuan University Chengdu Sichuan China Department of Gastroenterology Ya’an People’s Hospital Ya’an Sichuan China Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA
To the Editor:Gastroscopy is considered to be the main method for diagnosing gastric *** correctly diagnosing different gastric lesions under white light endoscopy (WLE) may be challenging as the morphological manifes...
来源: 评论
A comprehensive interpretable machine learning framework for mild cognitive impairment and Alzheimer’s disease diagnosis
arXiv
收藏 引用
arXiv 2024年
作者: Vlontzou, Maria Eleftheria Athanasiou, Maria Dalakleidi, Kalliopi V. Skampardoni, Ioanna Davatzikos, Christos Nikita, Konstantina Faculty of Electrical and Computer Engineering National Technical University of Athens Athens15773 Greece Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Pennsylvania PhiladelphiaPA United States
An interpretable machine learning (ML) framework is introduced to enhance the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD) by ensuring robustness of the ML models’ interpretations. The d... 详细信息
来源: 评论
Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Rongguang Erus, Guray Chaudhari, Pratik Davatzikos, Christos Department of Electrical and Systems Engineering University of Pennsylvania United States Center for AI and Data Science for Integrated Diagnostics University of Pennsylvania United States Center for Biomedical Image Computing and Analytics University of Pennsylvania United States Department of Computer and Information Science University of Pennsylvania United States Department of Radiology Perelman School of Medicine University of Pennsylvania United States Center for Biomedical Image Computing and Analytics University of Pennsylvania 3700 Hamilton Walk 7th Floor PhiladelphiaPA19104 United States
Machine learning (ML) is revolutionizing many areas of engineering and science, including healthcare. However, it is also facing a reproducibility crisis, especially in healthcare. ML models that are carefully constru... 详细信息
来源: 评论
Generative Adversarial Networks based Skin Lesion Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Innani, Shubham Dutande, Prasad Baid, Ujjwal Pokuri, Venu Bakas, Spyridon Talbar, Sanjay Baheti, Bhakti Guntuku, Sharath Chandra Center of Excellence in Signal and Image Processing Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia United States Department of Computer and Information Science University of Pennsylvania Philadelphia United States
Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis (CAD) tools that automatically segment skin lesions from d... 详细信息
来源: 评论
Accurate Neuroanatomy Segmentation Using 3D Spatial and Anatomical Attention Neural Networks  14
Accurate Neuroanatomy Segmentation Using 3D Spatial and Anat...
收藏 引用
14th International Conference on Digital image Processing, ICDIP 2022
作者: Cheng, Hewei Ren, Zhengyu Li, Peiyang Tian, Yin Wang, Wei Li, Zhangyong Fan, Yong Research Center of Biomedical Engineering Chongqing University of Posts and Telecommunications Chongqing China Chongqing Engineering Laboratory of Digital Medical Equipment and Systems Chongqing University of Posts and Telecommunications Chongqing China Chongqing Engineering Research Center of Medical Electronics & Information Technology Chongqing University of Posts and Telecommunications Chongqing China Center for Biomedical Image Computing and Analytics Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States
Brain structure segmentation from 3D magnetic resonance (MR) images is a prerequisite for quantifying brain morphology. Since typical 3D whole brain deep learning models demand large GPU memory, 3D image patch-based d... 详细信息
来源: 评论