咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 82 篇 会议
  • 1 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 146 篇 工学
    • 105 篇 计算机科学与技术...
    • 88 篇 软件工程
    • 26 篇 生物工程
    • 24 篇 生物医学工程(可授...
    • 23 篇 信息与通信工程
    • 21 篇 控制科学与工程
    • 16 篇 光学工程
    • 16 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 化学工程与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 交通运输工程
  • 96 篇 理学
    • 54 篇 数学
    • 32 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 30 篇 物理学
    • 13 篇 系统科学
    • 7 篇 化学
    • 6 篇 地球物理学
  • 35 篇 管理学
    • 22 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 17 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 5 篇 教育学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 农学
  • 2 篇 法学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 10 篇 reinforcement le...
  • 10 篇 machine learning
  • 8 篇 deep learning
  • 8 篇 accuracy
  • 5 篇 contrastive lear...
  • 5 篇 predictive model...
  • 4 篇 cognition
  • 4 篇 image segmentati...
  • 4 篇 data models
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 transformers
  • 3 篇 neural networks
  • 3 篇 data engineering
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 stochastic syste...
  • 3 篇 biomedical imagi...
  • 3 篇 artificial intel...
  • 3 篇 synchronization

机构

  • 24 篇 center for data ...
  • 7 篇 guangdong key la...
  • 7 篇 center for machi...
  • 7 篇 college of compu...
  • 7 篇 peng cheng labor...
  • 7 篇 national key lab...
  • 6 篇 center for data ...
  • 6 篇 key laboratory o...
  • 6 篇 yizhun medical a...
  • 6 篇 school of data a...
  • 6 篇 the state key la...
  • 6 篇 dortmund data sc...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 5 篇 software college...
  • 5 篇 tu dortmund univ...
  • 5 篇 school of mathem...
  • 5 篇 college of compu...
  • 4 篇 collaborative in...
  • 4 篇 informatics inst...

作者

  • 17 篇 wang liwei
  • 7 篇 wang dong
  • 7 篇 triantafyllopoul...
  • 7 篇 schuller björn w...
  • 6 篇 zhao ziwei
  • 6 篇 liwei wang
  • 5 篇 zheng wei-shi
  • 5 篇 bakas spyridon
  • 5 篇 zhong han
  • 4 篇 yin jianwei
  • 4 篇 müller arthur
  • 4 篇 li hongwei bran
  • 4 篇 tsangko iosif
  • 4 篇 yu hong-xing
  • 4 篇 andreas triantaf...
  • 4 篇 linguraru marius...
  • 4 篇 di he
  • 4 篇 munteanu alexand...
  • 4 篇 müller emmanuel
  • 4 篇 he di

语言

  • 191 篇 英文
  • 35 篇 其他
检索条件"机构=Center of Machine Intelligence and Data Science"
227 条 记 录,以下是101-110 订阅
排序:
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Ai...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Iosif Tsangko Andreas Triantafyllopoulos Michael Müller Hendrik Schröter Björn W. Schuller EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics Technical University of Munich Germany MCML – Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM – Group on Language Audio & Music Imperial College London UK MDSI – Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a ‘one-size-fits-all’ ... 详细信息
来源: 评论
Deep molecular representation learning via fusing physical and chemical information  21
Deep molecular representation learning via fusing physical a...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Shuwen Yang Ziyao Li Guojie Song Lingsheng Cai Key Laboratory of Machine Perception and Intelligence (MOE) Peking University Beijing China Center for Data Science Peking University Beijing China
Molecular representation learning is the frst yet vital step in combining deep learning and molecular science. To push the boundaries of molecular representation learning, we present PhysChem, a novel neural architect...
来源: 评论
Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiaoyu Zhong, Han Yang, Zhuoran Wang, Zhaoran Wang, Liwei Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China Center for Data Science Peking University China Peng Cheng Laboratory China Department of Statistics and Data Science Yale University United States Department of Industrial Engineering and Management Sciences Northwestern University United States
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences, where instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human over... 详细信息
来源: 评论
Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots
收藏 引用
Internet of Things and Cyber-Physical Systems 2024年 第1期4卷 19-23页
作者: Gill, Sukhpal Singh Xu, Minxian Patros, Panos Wu, Huaming Kaur, Rupinder Kaur, Kamalpreet Fuller, Stephanie Singh, Manmeet Arora, Priyansh Parlikad, Ajith Kumar Stankovski, Vlado Abraham, Ajith Ghosh, Soumya K. Lutfiyya, Hanan Kanhere, Salil S. Bahsoon, Rami Rana, Omer Dustdar, Schahram Sakellariou, Rizos Uhlig, Steve Buyya, Rajkumar School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China Raygun Performance Monitoring Wellington New Zealand Center for Applied Mathematics Tianjin University Tianjin China Department of Science Kings Education London United Kingdom Cymax Group Technologies BC Canada QM Academy Queen Mary University of London London United Kingdom Jackson School of Geosciences University of Texas at Austin AustinTX United States Centre for Climate Change Research Indian Institute of Tropical Meteorology Pune India Microsoft Hyderabad India Institute for Manufacturing Department of Engineering University of Cambridge Cambridge United Kingdom Faculty of Computer and Information Science University of Ljubljana Ljubljana Slovenia Machine Intelligence Research Labs AuburnWA United States Faculty of Computing and Data Science FLAME University Maharashtra Pune India Department of Computer Science and Engineering Indian Institute of Technology Kharagpur India Department of Computer Science University of Western Ontario London Canada Sydney Australia School of Computer Science University of Birmingham United Kingdom School of Computer Science and Informatics Cardiff University Cardiff United Kingdom Distributed Systems Group Vienna University of Technology Vienna Austria Department of Computer Science University of Manchester Oxford Road Manchester United Kingdom Laboratory School of Computing and Information Systems The University of Melbourne Australia
ChatGPT, an AI-based chatbot, offers coherent and useful replies based on analysis of large volumes of data. In this article, leading academics, scientists, distinguish researchers and engineers discuss the transforma... 详细信息
来源: 评论
MassSpecGym: A benchmark for the discovery and identification of molecules  38
MassSpecGym: A benchmark for the discovery and identificatio...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Bushuiev, Roman Bushuiev, Anton de Jonge, Niek F. Young, Adamo Kretschmer, Fleming Samusevich, Raman Heirman, Janne Wang, Fei Zhang, Luke Dührkop, Kai Ludwig, Marcus Haupt, Nils A. Kalia, Apurva Brungs, Corinna Schmid, Robin Greiner, Russell Wang, Bo Wishart, David S. Liu, Li-Ping Rousu, Juho Bittremieux, Wout Rost, Hannes Mak, Tytus D. Hassoun, Soha Huber, Florian van der Hooft, Justin J.J. Stravs, Michael A. Böcker, Sebastian Sivic, Josef Pluskal, Tomáš Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Czech Republic Czech Institute of Informatics Robotics and Cybernetics Czech Technical University Czech Republic Bioinformatics Group Wageningen University & Research Netherlands Department of Computer Science University of Toronto Canada Bioinformatics Institute for Computer Science Friedrich Schiller University Jena Germany Department of Computer Science University of Antwerp Belgium Department of computing science University of Alberta Canada Alberta Machine Intelligence Institute Canada Department of Molecular Genetics University of Toronto Canada Bright Giant GmbH Department of Computer Science Tufts University United States Department of Biological Sciences University of Alberta Canada Department of Computer Science Aalto University Finland Mass Spectrometry Data Center National Institute of Standards and Technology United States Department of Chemical and Biological Engineering Tufts University United States Centre for Digitalisation and Digitality University of Applied Sciences Düsseldorf Germany Department of Biochemistry University of Johannesburg South Africa Eawag Swiss Federal Institute of Aquatic Science and Technology Switzerland
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throu...
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
arXiv
收藏 引用
arXiv 2025年
作者: Tsangko, Iosif Triantafyllopoulos, Andreas Müller, Michael Schröter, Hendrik Schuller, Björn W. EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany CHI – Chair of Health Informatics Technical University of Munich Germany MCML – Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM – Group on Language Audio & Music Imperial College London United Kingdom MDSI – Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a ‘one-size-fits-all’ ... 详细信息
来源: 评论
Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Ziwei Wang, Dong Chen, Yihong Wang, Ziteng Wang, Liwei Center for Data Science Peking University China Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China Yizhun Medical AI Co. Ltd China China Peng Cheng Laboratory China
Detecting mass in mammogram is significant due to the high occurrence and mortality of breast cancer. In mammogram mass detection, modeling pairwise lesion correspondence explicitly is particularly important. However,... 详细信息
来源: 评论
Policy Representation via Diffusion Probability Model for Reinforcement Learning
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Long Huang, Zhixiong Lei, Fenghao Zhong, Yucun Yang, Yiming Fang, Cong Wen, Shiting Zhou, Binbin Lin, Zhouchen School of Artificial Intelligence Peking University Beijing China College of Computer Science and Technology Zhejiang University China MOE Frontiers Science Center for Brain and Brain-Machine Integration College of Computer Science Zhejiang University China Institute of Automation Chinese Academy of Sciences Beijing China School of Computer and Data Engineering NingboTech University China College of Computer Science and Technology Hangzhou City University China
Popular reinforcement learning (RL) algorithms tend to produce a unimodal policy distribution, which weakens the expressiveness of complicated policy and decays the ability of exploration. The diffusion probability mo... 详细信息
来源: 评论
Touchstone benchmark: are we on the right way for evaluating AI algorithms for medical segmentation?  24
Touchstone benchmark: are we on the right way for evaluating...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Pedro R. A. S. Bassi Wenxuan Li Yucheng Tang Fabian Isensee Zifu Wang Jieneng Chen Yu-Cheng Chou Saikat Roy Yannick Kirchhoff Maximilian Rokuss Ziyan Huang Jin Ye Junjun He Tassilo Wald Constantin Ulrich Michael Baumgartner Klaus H. Maier-Hein Paul Jaeger Yiwen Ye Yutong Xie Jianpeng Zhang Ziyang Chen Yong Xia Zhaohu Xing Lei Zhu Yousef Sadegheih Afshin Bozorgpour Pratibha Kumari Reza Azad Dorit Merhof Pengcheng Shi Ting Ma Yuxin Du Fan Bai Tiejun Huang Bo Zhao Haonan Wang Xiaomeng Li Hanxue Gu Haoyu Dong Jichen Yang Maciej A. Mazurowski Saumya Gupta Linshan Wu Jiaxin Zhuang Hao Chen Holger Roth Daguang Xu Matthew B. Blaschko Sergio Decherchi Andrea Cavalli Alan L. Yuille Zongwei Zhou Department of Computer Science Johns Hopkins University and Department of Pharmacy and Biotechnology University of Bologna and Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Department of Computer Science Johns Hopkins University NVIDIA Division of Medical Image Computing German Cancer Research Center (DKFZ) and Helmholtz Imaging German Cancer Research Center (DKFZ) ESAT-PSI KU Leuven Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University and HIDSS4Health - Helmholtz Information and Data Science School for Health Shanghai Jiao Tong University Shanghai Artificial Intelligence Laboratory Division of Medical Image Computing German Cancer Research Center (DKFZ) Division of Medical Image Computing German Cancer Research Center (DKFZ) and Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Helmholtz Imaging German Cancer Research Center (DKFZ) and Interactive Machine Learning Group (IML) DKFZ School of Computer Science and Engineering Northwestern Polytechnical University Australian Institute for Machine Learning The University of Adelaide College of Computer Science and Technology Zhejiang University Hong Kong University of Science and Technology (Guangzhou) Hong Kong University of Science and Technology (Guangzhou) and Hong Kong University of Science and Technology Faculty of Informatics and Data Science University of Regensburg Faculty of Electrical Engineering and Information Technology RWTH Aachen University Faculty of Informatics and Data Science University of Regensburg and Fraunhofer Institute for Digital Medicine MEVIS Electronic & Information Engineering School Harbin Institute of Technology (Shenzhen) Shanghai Jiao Tong University and Beijing Academy of Artificial Intelligence (BAAI) S
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and ...
来源: 评论
Eigenvectors of the De Bruijn Graph Laplacian: A Natural Basis for the Cut and Cycle Space
arXiv
收藏 引用
arXiv 2024年
作者: Philippakis, Anthony Mallinar, Neil Pandit, Parthe Belkin, Mikhail GV 5 Cambridge Ctr CambridgeMA02142 United States The Broad Institute of MIT and Harvard 415 Main St CambridgeMA02142 United States Department of Computer Science and Engineering UC San Diego 3235 Voigt Dr San DiegoCA92093 United States Center for Machine Intelligence and Data Science IIT Bombay KReSIT Building IIT Powai Maharashtra Mumbai400076 India Halıcıoglu Data Science Institute UC San Diego 3234 Matthews Ln San DiegoCA92093 United States
We study the Laplacian of the undirected De Bruijn graph over an alphabet A of order k. While the eigenvalues of this Laplacian were found in 1998 by Delorme and Tillich [1], an explicit description of its eigenvector... 详细信息
来源: 评论