In order to dynamically create a sequence of textual descriptions for images, image description models often make use of the attention mechanism, which involves an automatic focus on different regions within an image....
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-and text-to-image *** particular,we adopted Contrastive Language-Image Pretraining(CLIP)as an encoder to extract semantics and StyleGAN as a decoder to generate images from such ***,to bridge the embedding space of CLIP and latent space of StyleGAN,real NVP is employed and modified with activation normalization and invertible *** the images and text in CLIP share the same representation space,text prompts can be fed directly into CLIP-Flow to achieve text-to-image *** conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis *** addition,we tested on the public dataset Multi-Modal CelebA-HQ,for text-to-image *** validated that our approach can generate high-quality text-matching images,and is comparable with state-of-the-art methods,both qualitatively and quantitatively.
This paper introduces a new network model - the Image Guidance Encoder-Decoder Model (IG-ED), designed to enhance the efficiency of image captioning and improve predictive accuracy. IG-ED, a fusion of the convolutiona...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is ...
详细信息
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic *** recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic ***,most models ignore the semantic spatial similarity between long-distance areas when mining spatial *** also ignore the impact of predicted time steps on the next unpredicted time step for making long-term ***,these models lack a comprehensive data embedding process to represent complex spatiotemporal *** paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in *** adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these *** model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic *** spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term *** on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
Knowledge tracing aims to track students’knowledge status over time to predict students’future performance *** a real environment,teachers expect knowledge tracing models to provide the interpretable result of knowl...
详细信息
Knowledge tracing aims to track students’knowledge status over time to predict students’future performance *** a real environment,teachers expect knowledge tracing models to provide the interpretable result of knowledge *** chain-based knowledge tracing(MCKT)models,such as Bayesian Knowledge Tracing,can track knowledge concept mastery probability over ***,as the number of tracked knowledge concepts increases,the time complexity of MCKT predicting student performance increases exponentially(also called explaining away problem).When the number of tracked knowledge concepts is large,we cannot utilize MCKT to track knowledge concept mastery probability over *** addition,the existing MCKT models only consider the relationship between students’knowledge status and problems when modeling students’responses but ignore the relationship between knowledge concepts in the same *** address these challenges,we propose an inTerpretable pRobAbilistiC gEnerative moDel(TRACED),which can track students’numerous knowledge concepts mastery probabilities over *** solve explain away problem,we design long and short-term memory(LSTM)-based networks to approximate the posterior distribution,predict students’future performance,and propose a heuristic algorithm to train LSTMs and probabilistic graphical model *** better model students’exercise responses,we proposed a logarithmic linear model with three interactive strategies,which models students’exercise responses by considering the relationship among students’knowledge status,knowledge concept,and *** conduct experiments with four real-world datasets in three knowledge-driven *** experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students’future performance and can learn the relationship among students,knowledge concepts,and problems from students’exercise *** also conduct several case *** case studies show that
Let P be a set of points in the plane and let T be a maximum-weight spanning tree of P. For an edge (p, q), let Dpq be the diametral disk induced by (p, q), i.e., the disk having the segment pq as its diameter. Let DT...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in softwareengineering,and iTrust Electronic Health Care System.
We present Q-Cogni, an algorithmically integrated causal reinforcement learning framework that redesigns Q-Learning to improve the learning process with causal inference. Q-Cogni achieves improved policy quality and l...
详细信息
In this paper,we tackle the challenging problem of point cloud completion from the perspective of feature *** key observation is that to recover the underlying structures as well as surface details,given partial input...
详细信息
In this paper,we tackle the challenging problem of point cloud completion from the perspective of feature *** key observation is that to recover the underlying structures as well as surface details,given partial input,a fundamental component is a good feature representation that can capture both global structure and local geometric *** accordingly first propose FSNet,a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map by learning multiple latent patterns from local *** then integrate FSNet into a coarse-to-fine pipeline for point cloud ***,a 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point ***,a point cloud upsampling network is used to generate a dense point cloud from the partial input and the coarse intermediate *** efficiently exploit local structures and enhance point distribution uniformity,we propose IFNet,a point upsampling module with a self-correction mechanism that can progressively refine details of the generated dense point *** have conducted qualitative and quantitative experiments on ShapeNet,MVP,and KITTI datasets,which demonstrate that our method outperforms stateof-the-art point cloud completion approaches.
暂无评论