In the era of digital transformation and increasing concerns regarding data privacy, the concept of Self-Sovereign Identity (SSI) has attained substantial recognization. SSI offers individuals greater control over the...
详细信息
Despite great progress in developing mode-selective light emission technologies based on self-emitting materials, few rewritable displays with modeselective multiple light emissions have been demonstrated. Herein, we ...
Despite great progress in developing mode-selective light emission technologies based on self-emitting materials, few rewritable displays with modeselective multiple light emissions have been demonstrated. Herein, we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence(FL), room-temperature phosphorescence(RTP), and electroluminescence(EL). The display comprises coplanar electrodes separated by a gap,a polymer composite with FL inorganic phosphors(EL/FL layer), and a polymer composite with solvent-responsive RTP additives(RTP layer). Upon 254 nm UV exposure, a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers, respectively. When a polar liquid, besides water, is applied on the display and an AC field is applied between the coplanar electrodes, EL from the EL/FL layer is triggered, and the display operates in a triple mode. Interestingly, when water is applied to the display, the RTP mode is deactivated, rendering the display to operate in a dual mode of FL and EL. By manipulating the evaporation of the applied polar liquids and water, the mode-selective light emission of FL, RTP, and EL is rewritable in the triple-mode display. Additionally, a high-security full-color information encryption display is demonstrated, wherein the information of digital numbers, letters, and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes. Thus, this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mis...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mismatch on the linearity of the SAR ADC. To reduce the number of capacitors, a hybrid architecture of a high 8-bit binary-weighted capacitor array and a low 6-bit resistor array is adopted by the digital-to-analog(DAC). The common-mode voltage VCM-based switching scheme is chosen to reduce the switching energy and area of the DAC. The time-domain comparator is employed to obtain lower power consumption. Sampling is performed through a gate voltage bootstrapped switch to reduce the nonlinear errors introduced when sampling the input signal. Moreover, the SAR logic and the whole calibration is totally implemented on-chip through digital integrated circuit(IC) tools such as design compiler, IC compiler, etc. Finally, a prototype is designed and implemented using 0.18 μm bipolar-complementary metal oxide semiconductor(CMOS)-double-diffused MOS 1.8 V CMOS technology. The measurement results show that the SAR ADC with on-chip bubble sorting calibration method achieves the signal-to-noise-and-distortion ratio of 69.75 dB and the spurious-free dynamic range of 83.77 dB.
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided d...
详细信息
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided diagnosis of pneumonia using deep learning techniques iswidely used due to its effectiveness and performance. In the proposed method,the Synthetic Minority Oversampling Technique (SMOTE) approach is usedto eliminate the class imbalance in the X-ray dataset. To compensate forthe paucity of accessible data, pre-trained transfer learning is used, and anensemble Convolutional Neural Network (CNN) model is developed. Theensemble model consists of all possible combinations of the MobileNetv2,Visual Geometry Group (VGG16), and DenseNet169 models. MobileNetV2and DenseNet169 performed well in the Single classifier model, with anaccuracy of 94%, while the ensemble model (MobileNetV2+DenseNet169)achieved an accuracy of 96.9%. Using the data synchronous parallel modelin Distributed Tensorflow, the training process accelerated performance by98.6% and outperformed other conventional approaches.
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with ot...
详细信息
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things(IoT).Human Activity Recognition data can be recorded with the help of sensors,images,or *** daily routine-based human activities such as walking,standing,sitting,etc.,could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network(2D CNN)MODEL,Long Short Term Memory(LSTM)Model,Bidirectional long short-term memory(Bi-LSTM)are used for the *** has been demonstrated that recognizing the daily routine-based on human activities can be extremely accurate,with almost all activities accurately getting recognized over 90%of the ***,because all the examples are generated from only 20 s of data,these actions can be recognised *** from classification,the work extended to verify and investigate the need for wearable sensing devices in individually walking patients with Cerebral Palsy(CP)for the evaluation of chosen Spatio-temporal features based on 3D foot ***-control research was conducted with 35 persons with CP ranging in weight from 25 to 65 *** Motion Capture(OMC)equipment was used as the referral method to assess the functionality and quality of the foot-worn *** average accuracy±precision for stride length,cadence,and step length was 3.5±4.3,4.1±3.8,and 0.6±2.7 cm *** cadence,stride length,swing,and step length,people with CP had considerably high inter-stride ***-worn sensing devices made it easier to examine Gait Spatio-temporal data even without a laboratory set up with high accuracy and precision about gait abnormalities in people who have CP during linear walking.
Maternal health during pregnancy is influenced by various factors that significantly impact pregnancy outcomes. This paper aims to highlight these critical factors, promote awareness, and advocate proactive self-care ...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensem...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior *** research work aimed to create a more diverse and effective ensemble *** this end,selected six classification models,Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbor(KNN),Decision Tree(DT),Support Vector Machine(SVM),and Random Forest(RF)from existing study to run as independent *** the individual models were trained,a Correlation-Based Diversity Matrix(CDM)was created by determining their *** models for the ensemble were chosen by the proposed Modified Minimization Approach for Model Subset Selection(Modified-MMS)from Lower triangular-CDM(L-CDM)as *** proposed algorithm performance was assessed using the Network Security Laboratory—Knowledge Discovery in Databases(NSL-KDD)dataset,and several performance metrics,including accuracy,precision,recall,and *** selecting a diverse set of models,the proposed system enhances the performance of an ensemble by reducing overfitting and increasing prediction *** proposed work achieved an impressive accuracy of 99.26%,using only two classification models in an ensemble,which surpasses the performance of a larger ensemble that employs six classification models.
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
Delay Tolerant Networks (DTNs) have the ability to make communication possible without end-to-end connectivity using store-carry-forward technique. Efficient data dissemination in DTNs is very challenging problem due ...
详细信息
暂无评论