Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in in...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in increasing their agricultural productivity daily since there are no technologies in the previous system to detect diseases in various crops in an agricultural environment. With the exponential population growth, food scarcity is a huge concern globally. In addition to this, the productivity of agricultural products has been highly impacted by the rapid increase in phytopathological adversities. The main challenges in leaf segmentation and plant disease identification are prior knowledge is required for segmentation, the implementation still lacks the accuracy of results, and more tweaking is required. To reduce the devastating impacts of illnesses on the economy, early detection of illnesses in plants is therefore essential. This paper describes an approach for segmenting and detecting plant leaf diseases based on images acquired via the Internet of Things (IoT) network. Here, a plant leaf area is segmented with a UNet, whose trainable parameters are optimized using the Mayfly Bald Eagle Optimization (MBEO) algorithm. Further, plant type classification is carried out by the Deep batch normalized AlexNet (DbneAlexNet), optimized by the Sine Cosine Algorithm-based Rider Neural Network (SCA-based RideNN). Finally, the DbneAlexNet, with weights adapted by the MBEO algorithm, is used to identify plant disease. The Plant Village dataset is used to evaluate the proposed DbneAlexNet-MBEO for plant-type classification and disease detection. The efficiency of the UNet-MBEO for segmentation is examined based on the Dice coefficient and Intersectin over Union (IOU) and has achieved superior values of 0.927 and 0.907. Moreover, the DbneAlexNet-MBEO is examined considering accuracy, Test Negative Rate (TNR), and Test Positive Rate (TPR) and offered superior values of 0
Fast Fourier Transform (FFT) is the transform used for the determination of the frequency domain features and description of the signal or image. The frequency components of the images are analyzed using the FFT techn...
详细信息
In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
With artificial intelligence propelling rapid technological advances, many tools and frameworks have surfaced to assist virtual learning settings. They all make unique claims about how best to facilitate distance educ...
详细信息
Road traffic management requires the ability to foresee geographical congestion conditions in an urban road traffic network. The proposed investigation is aimed to envisage the presence of blockage in a specific regio...
详细信息
With rapidly expanding cloud-enabled big data environments, there is an imperative need for efficient data-sharing mechanisms that are multidimensional and balance both speed and security. In this connection, high-spe...
详细信息
Social media has become an essential forum for people to share their thoughts and sentiments owing to the quick rise in mobile technology. Business and political organizations might benefit from understanding public s...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mis...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mismatch on the linearity of the SAR ADC. To reduce the number of capacitors, a hybrid architecture of a high 8-bit binary-weighted capacitor array and a low 6-bit resistor array is adopted by the digital-to-analog(DAC). The common-mode voltage VCM-based switching scheme is chosen to reduce the switching energy and area of the DAC. The time-domain comparator is employed to obtain lower power consumption. Sampling is performed through a gate voltage bootstrapped switch to reduce the nonlinear errors introduced when sampling the input signal. Moreover, the SAR logic and the whole calibration is totally implemented on-chip through digital integrated circuit(IC) tools such as design compiler, IC compiler, etc. Finally, a prototype is designed and implemented using 0.18 μm bipolar-complementary metal oxide semiconductor(CMOS)-double-diffused MOS 1.8 V CMOS technology. The measurement results show that the SAR ADC with on-chip bubble sorting calibration method achieves the signal-to-noise-and-distortion ratio of 69.75 dB and the spurious-free dynamic range of 83.77 dB.
Convolutional neural networks (ConvNets) have become increasingly popular for image classification tasks. All contemporary computer vision problems are being dominated by ConvNets. Conventional training methods using ...
详细信息
The increasing number of electronic transactions on the Internet has given rise to the design of recommendation systems. The main objective of these systems is to give recommendations to the users about the items (i.e...
详细信息
暂无评论