In this work, VoteDroid a novel fine-tuned deep learning models-based ensemble voting classifier has been proposed for detecting malicious behavior in Android applications. To this end, we proposed adopting the random...
详细信息
Online offensive behaviour continues to rise with the increasing popularity and use of social media. Various techniques have been used to address this issue. However, most existing studies consider offensive content i...
详细信息
In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective ...
详细信息
In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training *** performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.
Deep neural networks have shown promising results in the classification of skin lesion images, particularly when they focus on the most significant regions of an image. However, the identification of melanoma continue...
详细信息
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics i...
详细信息
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics in semiconductor chips, quantum sensors and quantum computers. Such transformative speed would not only greatly improve the performance of technology, but unveil new vistas for fundamental science as well.
As location information of numerous Internet of Thing(IoT)devices can be recognized through IoT sensor technology,the need for technology to efficiently analyze spatial data is *** of the famous algorithms for classif...
详细信息
As location information of numerous Internet of Thing(IoT)devices can be recognized through IoT sensor technology,the need for technology to efficiently analyze spatial data is *** of the famous algorithms for classifying dense data into one cluster is Density-Based Spatial Clustering of Applications with Noise(DBSCAN).Existing DBSCAN research focuses on efficiently finding clusters in numeric data or categorical *** this paper,we propose the novel problem of discovering a set of adjacent clusters among the cluster results derived for each keyword in the keyword-based DBSCAN *** existing DBSCAN algorithm has a problem in that it is necessary to calculate the number of all cases in order to find adjacent clusters among clusters derived as a result of the *** solve this problem,we developed the Genetic algorithm-based Keyword Matching DBSCAN(GKM-DBSCAN)algorithm to which the genetic algorithm was applied to discover the set of adjacent clusters among the cluster results derived for each *** order to improve the performance of GKM-DBSCAN,we improved the general genetic algorithm by performing a genetic operation in *** conducted extensive experiments on both real and synthetic datasets to show the effectiveness of GKM-DBSCAN than the brute-force *** experimental results show that GKM-DBSCAN outperforms the brute-force method by up to 21 ***-DBSCAN with the index number binarization(INB)is 1.8 times faster than GKM-DBSCAN with the cluster number binarization(CNB).
Robust fake speech detection systems are crucial in an era where audio recordings can be easily altered or developed due to advancements in technology. The potential impact of this technology could be devastating due ...
详细信息
The global health crisis caused by the COVID-19 pandemic has brought new challenges to speaker identification systems, particularly due to the acoustic alterations caused by the widespread use of face masks. Aiming to...
详细信息
Population growth in cities results in a demand for parking lots from an increasing number of automobiles, which frequently contributes to the global problem of traffic congestion. This study presents the smart parkin...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
暂无评论