咨询与建议

限定检索结果

文献类型

  • 21 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 12 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 1 篇 信息与通信工程
    • 1 篇 轻工技术与工程
    • 1 篇 环境科学与工程(可...
  • 11 篇 理学
    • 10 篇 数学
    • 9 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 军事学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 3 篇 probability dist...
  • 1 篇 polarization
  • 1 篇 query languages
  • 1 篇 public policy
  • 1 篇 computational ef...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...
  • 1 篇 tweets
  • 1 篇 conjugate gradie...
  • 1 篇 sustainable agri...
  • 1 篇 synthetic apertu...
  • 1 篇 students
  • 1 篇 gaussian distrib...
  • 1 篇 blueprints
  • 1 篇 molecular dynami...
  • 1 篇 mesh generation
  • 1 篇 monte carlo meth...

机构

  • 8 篇 department of ma...
  • 5 篇 department of da...
  • 4 篇 digital society ...
  • 3 篇 munich center fo...
  • 2 篇 department of ma...
  • 2 篇 department of co...
  • 1 篇 laboratory of co...
  • 1 篇 hedps capt colle...
  • 1 篇 institute of bio...
  • 1 篇 odissei soda tea...
  • 1 篇 department of in...
  • 1 篇 swiss federal re...
  • 1 篇 department of ch...
  • 1 篇 department of pa...
  • 1 篇 physics departme...
  • 1 篇 centre for compl...
  • 1 篇 ecovision lab de...
  • 1 篇 infoflora switze...
  • 1 篇 swiss data scien...
  • 1 篇 yuanpei college ...

作者

  • 7 篇 bovet alexandre
  • 5 篇 furrer reinhard
  • 4 篇 hüllermeier eyke
  • 4 篇 bengs viktor
  • 4 篇 waegeman willem
  • 3 篇 schindler konrad
  • 3 篇 wegner jan dirk
  • 2 篇 herrero laia cas...
  • 2 篇 esser frank
  • 2 篇 zhang yuan
  • 1 篇 asgari yasaman
  • 1 篇 bore sigbjørn lø...
  • 1 篇 dietrich olivier
  • 1 篇 apostolov stoyan
  • 1 篇 zhang duo
  • 1 篇 brun philipp
  • 1 篇 de lutio riccard...
  • 1 篇 lu denghui
  • 1 篇 yang jiabin
  • 1 篇 cai chun

语言

  • 19 篇 英文
  • 5 篇 其他
检索条件"机构=Department of Mathematical Modeling and Machine Learning"
24 条 记 录,以下是1-10 订阅
排序:
A CLASS OF MODULAR AND FLEXIBLE COVARIATE-BASED COVARIANCE FUNCTIONS FOR NONSTATIONARY SPATIAL modeling
arXiv
收藏 引用
arXiv 2024年
作者: Blasi, Federico Furrer, Reinhard Department of Mathematical Modeling Machine Learning University of Zurich Zurich Switzerland
The assumptions of stationarity and isotropy often stated over spatial processes have not aged well during the last two decades, partly explained by the combination of computational developments and the increasing ava... 详细信息
来源: 评论
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation  36
Pitfalls of Epistemic Uncertainty Quantification through Los...
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Germany Munich Center for Machine Learning Germany Department of Data Analysis and Mathematical Modeling Ghent University Belgium
Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The l... 详细信息
来源: 评论
More than Formulas - Integrity, Communication, Computing and Reproducibility in Statistics Education
arXiv
收藏 引用
arXiv 2024年
作者: Furrer, Eva Cincera, Annina Furrer, Reinhard Epidemiology Biostatistics and Prevention Institute Center for Reproducible Science Switzerland Epidemiology Biostatistics and Prevention Institute Department of Mathematical Modeling and Machine Learning Switzerland Department of Mathematical Modeling and Machine Learning University of Zurich Switzerland
This paper introduces a novel course design in the Master Program in Biostatistics at the University of Zurich that integrates computing skills, effective communication, reproducibility, and scientific integrity withi... 详细信息
来源: 评论
COMMUNITY DETECTION ON DIRECTED NETWORKS WITH MISSING EDGES
arXiv
收藏 引用
arXiv 2024年
作者: Pedreschi, Nicola Lambiotte, Renaud Bovet, Alexandre Mathematical Institute University of Oxford Oxford United Kingdom Department of Mathematical Modeling and Machine Learning University of Zurich Zurich Switzerland
Identifying significant community structures in networks with incomplete data is a challenging task, as the reliability of solutions diminishes with increasing levels of missing information. However, in many empirical...
来源: 评论
The Perils & Promises of Fact-checking with Large Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Quelle, Dorian Bovet, Alexandre Department of Mathematical Modeling and Machine Learning Digital Society Initiative University of Zurich Zurich Switzerland
Automated fact-checking, using machine learning to verify claims, has grown vital as misinformation spreads beyond human fact-checking capacity. Large Language Models (LLMs) like GPT-4 are increasingly trusted to writ... 详细信息
来源: 评论
ON SECOND-ORDER SCORING RULES FOR EPISTEMIC UNCERTAINTY QUANTIFICATION
arXiv
收藏 引用
arXiv 2023年
作者: Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Munich Center for Machine Learning Germany Department of Data Analysis and Mathematical Modeling Ghent University Belgium
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of pr... 详细信息
来源: 评论
GRAPH SPRING NEURAL ODES FOR LINK SIGN PREDICTION
arXiv
收藏 引用
arXiv 2024年
作者: Rehmann, Andrin Bovet, Alexandre Pasteur Labs New York United States Department of Mathematical Modeling and Machine Learning Digital Society Initiative University of Zurich Switzerland
Signed graphs allow for encoding positive and negative relations between nodes and are used to model various online activities. Node representation learning for signed graphs is a well-studied task with important appl... 详细信息
来源: 评论
A CALIBRATION TEST FOR EVALUATING SET-BASED EPISTEMIC UNCERTAINTY REPRESENTATIONS
arXiv
收藏 引用
arXiv 2025年
作者: Jürgens, Mira Mortier, Thomas Hüllermeier, Eyke Bengs, Viktor Waegeman, Willem Department of Data Analysis and Mathematical Modeling Ghent University Belgium Department of Environment Ghent University Belgium Department of Informatics Munich Center for Machine Learning LMU Munich Germany
The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal s... 详细信息
来源: 评论
pasta: Pattern Analysis for Spatial Omics Data
arXiv
收藏 引用
arXiv 2024年
作者: Emons, Martin Gunz, Samuel Crowell, Helena L. Mallona, Izaskun Furrer, Reinhard Robinson, Mark D. Department of Molecular Life Sciences SIB Swiss Institute of Bioinformatics University of Zurich Zurich Switzerland Barcelona Spain Department of Mathematical Modeling and Machine Learning University of Zurich Zurich Switzerland
Spatial omics assays allow for the molecular characterisation of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, can give rise to very d...
来源: 评论
On the orthogonality of zero-mean Gaussian measures: Sufficiently dense sampling
arXiv
收藏 引用
arXiv 2022年
作者: Furrer, Reinhard Hediger, Michael Department of Mathematical Modeling and Machine Learning Department of Mathematics Winterthurerstrasse 190 Zurich8057 Switzerland
For a stationary random function ξ, sampled on a subset D of Rd, we examine the equivalence and orthogonality of two zero-mean Gaussian measures P1 and P2 associated with ξ. We give the isotropic analog to the resul... 详细信息
来源: 评论