NJmat is a user-friendly,data-driven machine learning interface designed for materials design and *** platform integrates advanced computational techniques,including natural language processing(NLP),large language mod...
详细信息
NJmat is a user-friendly,data-driven machine learning interface designed for materials design and *** platform integrates advanced computational techniques,including natural language processing(NLP),large language models(LLM),machine learning potentials(MLP),and graph neural networks(GNN),to facili-tate materials *** platform has been applied in diverse materials research areas,including perovskite surface design,catalyst discovery,battery materials screening,structural alloy design,and molecular *** automating feature selection,predictive modeling,and result interpretation,NJmat accelerates the development of high-performance materials across energy storage,conversion,and structural ***,NJmat serves as an educational tool,allowing students and researchers to apply machine learning techniques in materials science with minimal coding *** automated feature extraction,genetic algorithms,and interpretable machine learning models,NJmat simplifies the workflow for materials informatics,bridging the gap between AI and experimental materials *** latest version(available at https://***/articles/software/NJmatML/24607893(accessed on 01 January 2025))enhances its functionality by incorporating NJmatNLP,a module leveraging language models like MatBERT and those based on Word2Vec to support materials prediction *** utilizing clustering and cosine similarity analysis with UMAP visualization,NJmat enables intuitive exploration of materials *** NJmat primarily focuses on structure-property relationships and the discovery of novel chemistries,it can also assist in optimizing processing conditions when relevant parameters are included in the training *** providing an accessible,integrated environment for machine learning-driven materials discovery,NJmat aligns with the objectives of the Materials Genome Initiative and promotes broader adoption of AI techniques in materials science.
The ground-borne vibrations are generated when heavy vehicles travel over the speed bumps at high speeds. Traffic-induced vibrations are annoying for the occupants and damaging for the structures that are present clos...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
Energy is crucial to progress toward development, modernization, and economic prosperity. Energy and water are both crucial to human survival and play significant roles in the growth and development of society. The ne...
详细信息
Some types of software systems,like event‐based and non‐deterministic ones,are usually specified as rules so that we can analyse the system behaviour by drawing inferences from firing the ***,when the fuzzy rules ar...
详细信息
Some types of software systems,like event‐based and non‐deterministic ones,are usually specified as rules so that we can analyse the system behaviour by drawing inferences from firing the ***,when the fuzzy rules are used for the specification of non‐deterministic behaviour and they contain a large number of variables,they constitute a complex form that is difficult to understand and infer.A solution is to visualise the system specification with the capability of automatic rule *** this study,by representing a high‐level system specification,the authors visualise rule representation and firing using fuzzy coloured Petri‐***,several fuzzy Petri‐nets‐based methods have been presented,but they either do not support a large number of rules and variables or do not consider significant cases like(a)the weight of the premise's propositions in the occurrence of the rule conclusion,(b)the weight of conclusion's proposition,(c)threshold values for premise and conclusion's propositions of the rule,and(d)the certainty factor(CF)for the rule or the conclusion's *** considering cases(a)-(d),a wider variety of fuzzy rules are *** authors applied their model to the analysis of attacks against a part of a real secure water treatment *** another real experiment,the authors applied the model to the two scenarios from their previous work and analysed the results.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Breast cancer is the most frequent cause of death in women, being the second leading cause of cancer deaths worldwide. Early detection is a good remedy hence we have devised a Computer Aided Detection (CAD) method to ...
详细信息
Traditional encryption methods typically encrypt the entire dataset and searching and querying can only be performed after decryption. Searchable Encryption enables searching, matching, and querying operations to be p...
详细信息
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical t...
详细信息
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption *** findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective *** encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit *** planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant *** subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance *** auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted *** results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical *** a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted ***,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,***,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.
This paper introduces a new network model - the Image Guidance Encoder-Decoder Model (IG-ED), designed to enhance the efficiency of image captioning and improve predictive accuracy. IG-ED, a fusion of the convolutiona...
详细信息
暂无评论