咨询与建议

限定检索结果

文献类型

  • 673 篇 期刊文献
  • 425 篇 会议
  • 4 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 476 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 144 篇 生物工程
    • 97 篇 生物医学工程(可授...
    • 96 篇 信息与通信工程
    • 96 篇 控制科学与工程
    • 71 篇 光学工程
    • 56 篇 电气工程
    • 50 篇 电子科学与技术(可...
    • 45 篇 化学工程与技术
    • 43 篇 安全科学与工程
    • 24 篇 机械工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 22 篇 动力工程及工程热...
    • 20 篇 仪器科学与技术
  • 535 篇 理学
    • 320 篇 数学
    • 178 篇 统计学(可授理学、...
    • 163 篇 生物学
    • 109 篇 物理学
    • 68 篇 系统科学
    • 62 篇 化学
  • 162 篇 管理学
    • 82 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 78 篇 医学
    • 62 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 35 篇 公共卫生与预防医...
    • 27 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 农学
  • 17 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 63 篇 machine learning
  • 51 篇 deep learning
  • 45 篇 accuracy
  • 25 篇 convolutional ne...
  • 24 篇 real-time system...
  • 23 篇 forecasting
  • 21 篇 reviews
  • 21 篇 decision making
  • 21 篇 artificial intel...
  • 18 篇 reinforcement le...
  • 18 篇 magnetic resonan...
  • 18 篇 medical services
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 15 篇 support vector m...
  • 15 篇 data mining
  • 14 篇 optimization
  • 14 篇 diseases
  • 14 篇 machine learning...

机构

  • 63 篇 machine learning...
  • 46 篇 department of st...
  • 24 篇 munich center fo...
  • 22 篇 center for data ...
  • 21 篇 machine learning...
  • 21 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 14 篇 department of el...
  • 14 篇 australian insti...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 12 篇 department of ph...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 division of medi...
  • 10 篇 school of mathem...

作者

  • 66 篇 ramdas aaditya
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 müller klaus-rob...
  • 20 篇 balakrishnan siv...
  • 19 篇 prateek verma
  • 17 篇 verma prateek
  • 16 篇 zhang kun
  • 15 篇 ghojogh benyamin
  • 15 篇 ghodsi ali
  • 15 篇 karray fakhri
  • 15 篇 crowley mark
  • 14 篇 du jin-hong
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 ravikumar pradee...
  • 12 篇 montavon grégoir...
  • 12 篇 carneiro gustavo

语言

  • 945 篇 英文
  • 154 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Statistics and Data Science and Machine Learning Department"
1102 条 记 录,以下是681-690 订阅
排序:
Incremental Propensity Score Effects for Criminology: An Application Assessing the Relationship Between Homelessness, Behavioral Health Problems, and Recidivism
arXiv
收藏 引用
arXiv 2023年
作者: Jacobs, Leah A. McClean, Alec Branson, Zach Kennedy, Edward Fixler, Alex School of Social Work University of Pittsburgh PittsburghPA United States Statistics and Data Science Department Dietrich School of Humanities and Social Sciences Carnegie Mellon University PittsburghPA United States School of Social Work 2217D Cathedral of Learning 4200 Fifth Avenue PittsburghPA15260 United States
Objectives: This study examines the relationship between homelessness and recidivism among people on probation with and without behavioral health problems. The study also illustrates a new way to summarize the effect ...
来源: 评论
From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis
arXiv
收藏 引用
arXiv 2025年
作者: Weers, Alexander Berger, Alexander H. Lux, Laurin Schüffler, Peter Rueckert, Daniel Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center of Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany Institute of Pathology TUM School of Medicine and Health Technical University of Munich Munich Germany Weill Cornell Medicine Cornell University New York CityNY United States
The histopathological classification of whole-slide images (WSIs) is a fundamental task in digital pathology;yet it requires extensive time and expertise from specialists. While deep learning methods show promising re... 详细信息
来源: 评论
Touchstone benchmark: are we on the right way for evaluating AI algorithms for medical segmentation?  24
Touchstone benchmark: are we on the right way for evaluating...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Pedro R. A. S. Bassi Wenxuan Li Yucheng Tang Fabian Isensee Zifu Wang Jieneng Chen Yu-Cheng Chou Saikat Roy Yannick Kirchhoff Maximilian Rokuss Ziyan Huang Jin Ye Junjun He Tassilo Wald Constantin Ulrich Michael Baumgartner Klaus H. Maier-Hein Paul Jaeger Yiwen Ye Yutong Xie Jianpeng Zhang Ziyang Chen Yong Xia Zhaohu Xing Lei Zhu Yousef Sadegheih Afshin Bozorgpour Pratibha Kumari Reza Azad Dorit Merhof Pengcheng Shi Ting Ma Yuxin Du Fan Bai Tiejun Huang Bo Zhao Haonan Wang Xiaomeng Li Hanxue Gu Haoyu Dong Jichen Yang Maciej A. Mazurowski Saumya Gupta Linshan Wu Jiaxin Zhuang Hao Chen Holger Roth Daguang Xu Matthew B. Blaschko Sergio Decherchi Andrea Cavalli Alan L. Yuille Zongwei Zhou Department of Computer Science Johns Hopkins University and Department of Pharmacy and Biotechnology University of Bologna and Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Department of Computer Science Johns Hopkins University NVIDIA Division of Medical Image Computing German Cancer Research Center (DKFZ) and Helmholtz Imaging German Cancer Research Center (DKFZ) ESAT-PSI KU Leuven Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University and HIDSS4Health - Helmholtz Information and Data Science School for Health Shanghai Jiao Tong University Shanghai Artificial Intelligence Laboratory Division of Medical Image Computing German Cancer Research Center (DKFZ) Division of Medical Image Computing German Cancer Research Center (DKFZ) and Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Helmholtz Imaging German Cancer Research Center (DKFZ) and Interactive Machine Learning Group (IML) DKFZ School of Computer Science and Engineering Northwestern Polytechnical University Australian Institute for Machine Learning The University of Adelaide College of Computer Science and Technology Zhejiang University Hong Kong University of Science and Technology (Guangzhou) Hong Kong University of Science and Technology (Guangzhou) and Hong Kong University of Science and Technology Faculty of Informatics and Data Science University of Regensburg Faculty of Electrical Engineering and Information Technology RWTH Aachen University Faculty of Informatics and Data Science University of Regensburg and Fraunhofer Institute for Digital Medicine MEVIS Electronic & Information Engineering School Harbin Institute of Technology (Shenzhen) Shanghai Jiao Tong University and Beijing Academy of Artificial Intelligence (BAAI) S
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and ...
来源: 评论
CLOUD CLASSIFICATION WITH UNSUPERVISED DEEP learning
arXiv
收藏 引用
arXiv 2022年
作者: Kurihana, Takuya Foster, Ian Willett, Rebecca Jenkins, Sydney Koenig, Kathryn Werman, Ruby Lourenco, Ricardo Barros Neo, Casper Moyer, Elisabeth Department of Computer Science University of Chicago United States Data Science and Learning Division Argonne National Lab United States Department of the Geophysical Sciences University of Chicago United States Department of Statistics University of Chicago United States Department of Physics University of Chicago United States Harris School of Public Policy University of Chicago United States College of Letters & Science University of California Berkeley United States
We present a framework for cloud characterization that leverages modern unsupervised deep learning technologies. While previous neural network-based cloud classification models have used supervised learning methods, u... 详细信息
来源: 评论
OADAT: Experimental and Synthetic Clinical Optoacoustic data for Standardized Image Processing
arXiv
收藏 引用
arXiv 2022年
作者: Ozdemir, Firat Lafci, Berkan Deán-Ben, Xosé Luís Razansky, Daniel Perez-Cruz, Fernando Swiss Data Science Center ETH Zurich and EPFL Zurich Switzerland Institute of Pharmacology and Toxicology Institute for Biomedical Engineering Faculty of Medicine University of Zurich Switzerland Institute for Biomedical Engineering Department of Information Technology and Electrical Engineering ETH Zurich Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by subsequent detection of ultrasound waves generated via light-absorption-mediated thermoelastic e... 详细信息
来源: 评论
The Alchemical Integral Transform revisited
arXiv
收藏 引用
arXiv 2023年
作者: Krug, Simon León von Lilienfeld, O. Anatole Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada
We recently introduced the Alchemical Integral Transform (AIT) enabling the prediction of energy differences, and guessed an Ansatz to parametrize space r in some alchemical change λ. Here, we present a rigorous deri... 详细信息
来源: 评论
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Feng Huang, Biwei Chen, Zhengming Cai, Ruichu Glymour, Clark Geng, Zhi Zhang, Kun Department of Applied Statistics Beijing Technology and Business University Beijing102488 China University of California San Diego La Jolla San DiegoCA92093 United States School of Computer Science Guangdong University of Technology Guangzhou510006 China Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Department of Philosophy Carnegie Mellon University PittsburghPA15213 United States
We investigate the challenging task of learning causal structure in the presence of latent variables, including locating latent variables, determining their quantity, and identifying causal relationships among both la... 详细信息
来源: 评论
Distribution-free binary classification: Prediction sets, confidence intervals and calibration
arXiv
收藏 引用
arXiv 2020年
作者: Gupta, Chirag Podkopaev, Aleksandr Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We study three notions of uncertainty quantification-calibration, confidence intervals and prediction sets-for binary classification in the distribution-free setting, that is without making any distributional assumpti... 详细信息
来源: 评论
On conditional versus marginal bias in multi-armed bandits
arXiv
收藏 引用
arXiv 2020年
作者: Shin, Jaehyeok Rinaldo, Alessandro Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The bias of the sample means of the arms in multiarmed bandits is an important issue in adaptive data analysis that has recently received considerable attention in the literature. Existing results relate in precise wa... 详细信息
来源: 评论
Schedule-Robust Online Continual learning
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Ruohan Ciccone, Marco Luise, Giulia Pontil, Massimiliano Yapp, Andrew Ciliberto, Carlo Singapore Politecnico di Torino Torino Italy Centre for Artificial Intelligence Department of Computer Science University College London United Kingdom Computational Statistics and Machine Learning Group Istituto Italiano di Tecnologia Genova Italy National University of Singapore Singapore
A continual learning (CL) algorithm learns from a non-stationary data stream. The non-stationarity is modeled by some schedule that determines how data is presented over time. Most current methods make strong assumpti... 详细信息
来源: 评论