咨询与建议

限定检索结果

文献类型

  • 1,200 篇 会议
  • 1,195 篇 期刊文献
  • 20 册 图书

馆藏范围

  • 2,415 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,649 篇 工学
    • 930 篇 计算机科学与技术...
    • 817 篇 软件工程
    • 440 篇 控制科学与工程
    • 298 篇 信息与通信工程
    • 239 篇 电气工程
    • 235 篇 机械工程
    • 181 篇 生物工程
    • 144 篇 生物医学工程(可授...
    • 140 篇 电子科学与技术(可...
    • 118 篇 光学工程
    • 90 篇 仪器科学与技术
    • 83 篇 化学工程与技术
    • 71 篇 动力工程及工程热...
    • 50 篇 交通运输工程
    • 49 篇 材料科学与工程(可...
    • 41 篇 安全科学与工程
    • 40 篇 建筑学
    • 38 篇 力学(可授工学、理...
  • 935 篇 理学
    • 504 篇 数学
    • 199 篇 生物学
    • 196 篇 系统科学
    • 190 篇 物理学
    • 144 篇 统计学(可授理学、...
    • 79 篇 化学
  • 379 篇 管理学
    • 257 篇 管理科学与工程(可...
    • 132 篇 图书情报与档案管...
    • 69 篇 工商管理
  • 104 篇 医学
    • 92 篇 临床医学
    • 71 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 41 篇 法学
  • 27 篇 经济学
  • 20 篇 农学
  • 14 篇 教育学
  • 11 篇 艺术学
  • 7 篇 文学
  • 1 篇 军事学

主题

  • 54 篇 feature extracti...
  • 53 篇 automation
  • 44 篇 control systems
  • 37 篇 reinforcement le...
  • 35 篇 neural networks
  • 35 篇 training
  • 34 篇 laboratories
  • 34 篇 optimization
  • 33 篇 machine learning
  • 32 篇 deep learning
  • 31 篇 accuracy
  • 29 篇 image segmentati...
  • 28 篇 artificial intel...
  • 27 篇 computational mo...
  • 27 篇 robustness
  • 26 篇 trajectory
  • 25 篇 mathematical mod...
  • 24 篇 semantics
  • 23 篇 computer science
  • 22 篇 stability analys...

机构

  • 74 篇 school of automa...
  • 67 篇 department of au...
  • 57 篇 faculty of infor...
  • 56 篇 national laborat...
  • 50 篇 university of ch...
  • 46 篇 state key labora...
  • 46 篇 beijing key labo...
  • 46 篇 school of electr...
  • 40 篇 school of automa...
  • 38 篇 institute of aut...
  • 35 篇 ieee
  • 35 篇 school of artifi...
  • 31 篇 peng cheng labor...
  • 29 篇 school of comput...
  • 28 篇 school of comput...
  • 28 篇 institutes for r...
  • 28 篇 school of inform...
  • 27 篇 school of automa...
  • 27 篇 state key labora...
  • 26 篇 school of automa...

作者

  • 43 篇 niyato dusit
  • 38 篇 junping du
  • 38 篇 kang jiawen
  • 37 篇 yingmin jia
  • 27 篇 fashan yu
  • 22 篇 fei-yue wang
  • 20 篇 johansson karl h...
  • 19 篇 kang li
  • 19 篇 li kang
  • 19 篇 yang tao
  • 18 篇 yi xinlei
  • 18 篇 du hongyang
  • 16 篇 shi ling
  • 15 篇 du junping
  • 15 篇 jia yingmin
  • 15 篇 derong liu
  • 15 篇 fei minrui
  • 14 篇 li stan z.
  • 14 篇 li xiang
  • 14 篇 xiong zehui

语言

  • 1,982 篇 英文
  • 388 篇 其他
  • 49 篇 中文
检索条件"机构=Laboratory of Computer Science Engineering and Automation"
2415 条 记 录,以下是1551-1560 订阅
排序:
Revealing fine structures of the retinal receptive field by deep learning networks
arXiv
收藏 引用
arXiv 2018年
作者: Yan, Qi Zheng, Yajing Jia, Shanshan Zhang, Yichen Yu, Zhaofei Chen, Feng Tian, Yonghong Huang, Tiejun Liu, Jian K. Department of Automation Tsinghua University Beijing China National Engineering Laboratory for Video Technology School of Electronics Engineering and Computer Science Peking University Beijing China Department of Automation Beijing Innovation Center for Future Chip LSBDPA Beijing Key Laboratory Tsinghua University Beijing China Centre for Systems Neuroscience Department of Neuroscience Psychology and Behaviour University of Leicester Leicester United Kingdom
Deep convolutional neural networks (CNNs) have demonstrated impressive performance on many visual tasks. Recently, they became useful models for the visual system in neuroscience. However, it is still not clear what a... 详细信息
来源: 评论
Energy efficient massive MIMO through distributed precoder design
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Shuai Liu, Lu Cheng, Yu Cao, Xianghui Zhou, Sheng Niu, Zhisheng Shan, Hangguan Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago United States School of Automation Southeast University Nanjing210018 China Tsinghua National Laboratory for Information Science and Technology Department of Electronic Engineering Tsinghua University Beijing100084 China College of Information Science and Electronic Engineering Zhejiang University Hangzhou310027 China
This paper presents an energy-efficient downlink precoding scheme with the objective of maximizing system energy efficiency in a multi-cell massive MIMO system. The proposed precoding design jointly considers the issu... 详细信息
来源: 评论
Design of a High Precision Seeder Control System  3
Design of a High Precision Seeder Control System
收藏 引用
2017 IEEE 第3届信息技术与机电一体化工程国际学术会议(ITOEC 2017)
作者: Yan Jiang Xianglong Zhou Jie Duan Jingbo Zhao College of Automation Engineering Qingdao University of Technology Shandong Provincial Key Laboratory of Computer Networks Shandong Computer Science Center(National Super computer Center in Jinan) National People’s Liberation Army Naval Submarine Academy
Aiming at the problem that the precision control of the seeder is not high,the position control system of the stepper motor with DSP as the controller is *** system uses SCI serial port to c
来源: 评论
Millimeter-wave radar image analysis for the traffic sensing
收藏 引用
Journal of Physics: Conference Series 2020年 第5期1507卷
作者: H M Wu F Qi J K Wang Y Wang School of communication science and engineering Northeastern University Liaoning Province Shenyang 110819 China Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences China Key Lab of Image Understanding and Computer Vision Liaoning Province Shenyang 110016 China
Millimeter-wave(MMW) radar sensing is one of the most promising technologies to provide safe navigation for autonomous vehicles due to its expected high-resolution imaging capability However, driverless cars have high...
来源: 评论
Common Limitations of Image Processing Metrics: A Picture Story
arXiv
收藏 引用
arXiv 2021年
作者: Reinke, Annika Tizabi, Minu D. Sudre, Carole H. Eisenmann, Matthias Rädsch, Tim Baumgartner, Michael Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Bankhead, Peter Benis, Arriel Blaschko, Matthew Buettner, Florian Cardoso, M. Jorge Chen, Jianxu Cheplygina, Veronika Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Engelhardt, Sandy Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hamprecht, Fred Hashimoto, Daniel A. Heckmann-Nötzel, Doreen Hirsch, Peter Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kavur, A. Emre Kenngott, Hannes Kleesiek, Jens Kleppe, Andreas Koehler, Sven Kofler, Florian Kopp-Schneider, Annette Kooi, Thijs Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moher, David Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Noyan, M. Alican Petersen, Jens Polat, Gorkem Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Rieke, Nicola Riegler, Michael A. Rivaz, Hassan Saez-Rodriguez, Julio Sánchez, Clara I. Schroeter, Julien Saha, Anindo Selver, M. Alper Sharan, Lalith Shetty, Shravya Smeden, Maarten V.A.N. Stieltjes, Bram Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Calster, Ben V.A.N. Varoquaux, Gaël Wiesenfarth, Manuel Yaniv, Ziv R. Jäger, Paul Maier-Hein, Lena Division of Intelligent Medical Systems and HI Helmholtz Imaging Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Intelligent Medical Systems Heidelberg Germany NCT Heidelberg DKFZ University Medical Center Heidelberg Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Division of Medical Image Computing Heidelberg Germany Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montréal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Institute of Genetics and Cancer University of Edinburgh Edinburgh United Kingdom Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Kasteelpark Arenberg 10 - box 2441 Leuven3001 Belgium Frankfurt/Mainz DKFZ UCT Frankfurt-Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany Frankfurt Cancer Insititute Germany Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for St
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, obj... 详细信息
来源: 评论
Optimal denial-of-service attack energy management over an SINR-based network
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Jiahu Li, Menglin Shi, Ling Kang, Yu Department of Automation University of Science and Technology of China Hefei230027 China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Department of Automation State Key Laboratory of Fire Science Institute of Advanced Technology University of Science and Technology of China Hefei230027 China Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems Chinese Academy of Sciences Beijing100190 China
We consider a scenario in which a DoS attacker with the limited power resource and the purpose of degrading the system performance, jams a wireless network through which the packet from a sensor is sent to a remote es... 详细信息
来源: 评论
EEG function network analysis of left and right hand motor imagery
EEG function network analysis of left and right hand motor i...
收藏 引用
2017 Chinese automation Congress, CAC 2017
作者: Zhang, Rui Yan, Yamin Hu, Yuxia Shi, Li Wan, Hong Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology School of Electric Engineering Zhengzhou University Zhengzhou China Department of Automation Tsinghua University Beijing China
Network analysis of signals originating from different parts of brain during motor imagery (MI) has gained lots of interest recently. In this paper, we used EEG to construct the brain network during MI, and analyzed t... 详细信息
来源: 评论
Randomized consensus based distributed kalman filtering over wireless sensor networks
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Jiahu Wang, Jie Shi, Ling Kang, Yu Department of Automation University of Science and Technology of China Hefei230027 China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Department of Automation State Key Laboratory of Fire Science Institute of Advanced Technology University of Science and Technology of China Hefei230027 China Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Chinese Academy of Sciences Beijing100190 China
This paper is concerned with developing a novel distributed Kalman filtering algorithm over wireless sensor networks based on randomized consensus strategy. Compared with centralized algorithm, distributed filtering t... 详细信息
来源: 评论
Ensemble soft-margin softmax loss for image classification
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Xiaobo Zhang, Shifeng Lei, Zhen Liu, Si Guo, Xiaojie Li, Stan Z. CBSRandNLPR Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing Key Laboratory of Digital Media School of Computer Science and Engineering Beihang University School of Computer Software Tianjin University Tianjin China Faculty of Information Technology Macau University of Science and Technology Macau China
Softmax loss is arguably one of the most popular losses to train CNN models for image classification. However, recent works have exposed its limitation on feature discriminability. This paper casts a new viewpoint on ... 详细信息
来源: 评论
Multi-view hybrid embedding: A divide-and-conquer approach
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Jiamiao Yu, Shujian You, Xinge Leng, Mengjun Jing, Xiao-Yuan Chen, C. L. Philip School of Electronic Information and Communications Huazhong University of Science and Technology Wuhan430074 China Department of Electrical and Computer Engineering University of Florida GainesvilleFL32611 United States Department of Computer Science University of Houston HoustonTX77204 United States State Key Laboratory of Software Engineering School of Computer Wuhan University China Department of Computer and Information Science Faculty of Science and Technology University of Macau Macau99999 China Dalian Maritime University Dalian116026 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100080 China
We present a novel cross-view classification algorithm where the gallery and probe data come from different views. A popular approach to tackle this problem is the multiview subspace learning (MvSL) that aims to learn... 详细信息
来源: 评论