Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric *** overcome the imbalance of existing methods between multi-scale feature fusio...
详细信息
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric *** overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical *** correlation analysis is first employed to identify SOC-related *** parameters are then input into a multi-layer GRU for point-wise feature ***,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time ***,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are *** extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.
Research has demonstrated the positive influence of Undergraduate Research Experience (URE) programs in science, Technology, engineering, and Mathematics (STEM) on students' educational journey and their developme...
详细信息
Vehicles with advanced driving assist systems that automatically steer, accelerate and brake are popular, but associated with increased driver distraction. This distraction, coupled with unreliable autonomous system p...
详细信息
Vehicles with advanced driving assist systems that automatically steer, accelerate and brake are popular, but associated with increased driver distraction. This distraction, coupled with unreliable autonomous system performance, leads to vehicles that may be at higher risk for striking pedestrians. To this end, this study tested three consumer vehicles in two different model classes in a pedestrian crossing scenario. In 120 trials, one model never detected the pedestrian, nor alerted the driver. In 123 trials, the other model vehicles almost always detected the pedestrian, but in 35% of trials, alerted the driver too late. These cars were not consistent internally or with one another in pedestrian detections and responses, and only sparingly sounded any warnings. These intelligent vehicles also detected the pedestrian earlier if there were no established lane lines, suggesting that in well-marked areas, typically the case in for established crossings, pedestrians may be at increased risk of a possible conflict. This research demonstrates that artificial intelligence can lead to unreliable vehicle behaviors and warnings in pedestrian detection, potentially catching drivers off guard. These results further indicate industry needs to do more testing of intelligent systems, regulators should reevaluate the self-certification approval process, and that more fundamental work is needed in academia around the performance and quality of technologies with embedded neural networks. Authors
In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective ...
详细信息
In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known *** is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training *** performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.
Artificial intelligence(AI)is shifting the paradigm of two-phase heat transfer *** innovations in AI and machine learning uniquely offer the potential for collecting new types of physically meaningful features that ha...
详细信息
Artificial intelligence(AI)is shifting the paradigm of two-phase heat transfer *** innovations in AI and machine learning uniquely offer the potential for collecting new types of physically meaningful features that have not been addressed in the past,for making their insights available to other domains,and for solving for physical quantities based on first principles for phasechange thermofluidic *** review outlines core ideas of current AI technologies connected to thermal energy science to illustrate how they can be used to push the limit of our knowledge boundaries about boiling and condensation *** technologies for meta-analysis,data extraction,and data stream analysis are described with their potential challenges,opportunities,and alternative ***,we offer outlooks and perspectives regarding physics-centered machine learning,sustainable cyberinfrastructures,and multidisciplinary efforts that will help foster the growing trend of AI for phase-change heat and mass transfer.
In the competitive landscape of globalised markets, businesses must prioritise cost reduction for sustained competitiveness. This study delves into the dynamic facility layout problem (DFLP) within a cable production ...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of ...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of cooperative or cooperative-competitive networks. Regarding the problems of FTC and CFC on multiple Lagrange systems(MLSs), coupled sliding variables are introduced to deal with the robustness and consistent convergence. Then, the adaptive finite-time protocols are given based on the displacement approaches. With the premised FTC, tender-tracking methods are further developed for the problems of tracking information disparity. Stability analyses of those MLSs mentioned above are clarified with Lyapunov candidates considering the coupled sliding vectors, which provide new verification for tender-tracking systems. Under the given coupled-sliding-variable-based finite-time protocols, MLSs distributively adjust the local formation error to achieve global CFC and perform uniform convergence in time-varying tracking. Finally, simulation experiments are conducted while providing practical solutions for the theoretical results.
Vision sensors are versatile and can capture a wide range of visual cues, such as color, texture, shape, and depth. This versatility, along with the relatively inexpensive availability of machine vision cameras, playe...
详细信息
Vision sensors are versatile and can capture a wide range of visual cues, such as color, texture, shape, and depth. This versatility, along with the relatively inexpensive availability of machine vision cameras, played an important role in adopting vision-based environment perception systems in autonomous vehicles (AVs). However, vision-based perception systems can be easily affected by glare in the presence of a bright source of light, such as the sun or the headlights of the oncoming vehicle at night or simply by light reflecting off snow or ice-covered surfaces;scenarios encountered frequently during driving. In this paper, we investigate various glare reduction techniques, including the proposed saturated pixel-aware glare reduction technique for improved performance of the computer vision (CV) tasks employed by the perception layer of AVs. We evaluate these glare reduction methods based on various performance metrics of the CV algorithms used by the perception layer. Specifically, we considered object detection, object recognition, object tracking, depth estimation, and lane detection which are crucial for autonomous driving. The experimental findings validate the efficacy of the proposed glare reduction approach, showcasing enhanced performance across diverse perception tasks and remarkable resilience against varying levels of glare. IEEE
This research work explores the effects of dry, liquid N2-based cryogenic cooling and cryogenic plus MQL hybrid strategy on surface roughness, rake surface temperature, principal cutting-edge temperature, auxiliary cu...
详细信息
暂无评论