Point cloud completion is crucial in point cloud processing, as it can repair and refine incomplete 3D data, ensuring more accurate models. However, current point cloud completion methods commonly face a challenge: th...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, a...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, and varying lighting conditions, all of which exacerbate the difficulty of recognition. In recent years, the DETR model based on the Transformer architecture has eliminated traditional post-processing steps such as NMS(Non-Maximum Suppression), thereby simplifying the object detection process and improving detection accuracy, which has garnered widespread attention in the academic community. However, DETR has limitations such as slow training convergence, difficulty in query optimization, and high computational costs, which hinder its application in practical fields. To address these issues, this paper proposes a new object detection model called OptiDETR. This model first employs a more efficient hybrid encoder to replace the traditional Transformer encoder. The new encoder significantly enhances feature processing capabilities through internal and cross-scale feature interaction and fusion logic. Secondly, an IoU (Intersection over Union) aware query selection mechanism is introduced. This mechanism adds IoU constraints during the training phase to provide higher-quality initial object queries for the decoder, significantly improving the decoding performance. Additionally, the OptiDETR model integrates SW-Block into the DETR decoder, leveraging the advantages of Swin Transformer in global context modeling and feature representation to further enhance the performance and efficiency of object detection. To tackle the problem of small object detection, this study innovatively employs the SAHI algorithm for data augmentation. Through a series of experiments, It achieved a significant performance improvement of more than two percentage points in the mAP (mean Average Precision) metric compared to current mainstream object detection models. Furthermore, ther
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and th...
详细信息
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and the influence of parameter adjustments on the dynamic performance of the system is proposed. This is a useful supplement to the theoretical control models of optimizers. First, the system control model is derived based on the iterative formula of the optimizer, the optimizer model is expressed by differential equations, and the control equation of the optimizer is established. Second, based on the system control model of the optimizer, the phase trajectory process of the optimizer model and the influence of different hyperparameters on the system performance of the learning model are analyzed. Finally, controllers with different optimizers and different hyperparameters are used to classify the MNIST and CIFAR-10 datasets to verify the effects of different optimizers on the model learning performance and compare them with related methods. Experimental results show that selecting appropriate optimizers can accelerate the convergence speed of the model and improve the accuracy of model recognition. Furthermore, the convergence speed and performance of the stochastic gradient descent(SGD) optimizer are better than those of the stochastic gradient descent-momentum(SGD-M) and Nesterov accelerated gradient(NAG) optimizers.
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er soun...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er sound race ***,this constraint-based approach has serious limitations on helping programmers analyze and understand data ***,it may report a large number of false positives due to the unrecognized dataflow propa-gation of the ***,it recommends a wide range of thread context switches to schedule the reported race(in-cluding the false one)whenever this race is exposed during the constraint-solving *** ad hoc recommendation imposes too many context switches,which complicates the data race *** address these two limitations in the state-of-the-art constraint-based race detection,this paper proposes DFTracker,an improved constraint-based race detec-tor to recommend each data race with minimal thread context ***,we reduce the false positives by ana-lyzing and tracking the dataflow in the *** this means,DFTracker thus reduces the unnecessary analysis of false race *** further propose a novel algorithm to recommend an effective race schedule with minimal thread con-text switches for each data *** experimental results on the real applications demonstrate that 1)without removing any true data race,DFTracker effectively prunes false positives by 68%in comparison with the state-of-the-art constraint-based race detector;2)DFTracker recommends as low as 2.6-8.3(4.7 on average)thread context switches per data race in the real world,which is 81.6%fewer context switches per data race than the state-of-the-art constraint based race ***,DFTracker can be used as an effective tool to understand the data race for programmers.
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
Video colorization aims to add color to grayscale or monochrome *** existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obst...
详细信息
Video colorization aims to add color to grayscale or monochrome *** existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obstacles due to the additional necessity for temporal ***,there is rarely a systematic review of video colorization *** this paper,we aim to review existing state-of-the-art video colorization *** addition,maintaining spatial-temporal consistency is pivotal to the process of video *** gain deeper insight into the evolution of existing methods in terms of spatial-temporal consistency,we further review video colorization methods from a novel *** colorization methods can be categorized into four main categories:optical-flow based methods,scribble-based methods,exemplar-based methods,and fully automatic ***,optical-flow based methods rely heavily on accurate optical-flow estimation,scribble-based methods require extensive user interaction and modifications,exemplar-based methods face challenges in obtaining suitable reference images,and fully automatic methods often struggle to meet specific colorization *** also discuss the existing challenges and highlight several future research opportunities worth exploring.
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
暂无评论