The agricultural sector contributes significantly to greenhouse gas emissions, which cause global warming and climate change. Numerous mathematical models have been developed to predict the greenhouse gas emissions fr...
详细信息
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can prov...
详细信息
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can provide interfaces for other types. Data modifications in CBS have potential risks such as null reference or data *** verification of these operations can improve the reliability of CBS to some extent. Although separation logic is a mainstream approach to verifying program correctness, the complex architecture of CBS creates some challenges for verifications. This paper develops a proof system based on separation logic for verifying the CBS data modifications. The proof system can represent the CBS architecture, describe the properties of the CBS system state, and specify the behavior of CBS data modifications. Using the interactive verification approach from Coq, the proof system is implemented as a verification tool. With this tool, the paper builds machine-checked proofs for the functional correctness of CBS data modifications. This work can thus analyze the reliability of cloud storage from a formal perspective.
All the software products developed will need testing to ensure the quality and accuracy of the product. It makes the life of testers much easier when they can optimize on the effort spent and predict defects for the ...
详细信息
The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon *** paper focused on the energy cons...
详细信息
The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon *** paper focused on the energy consumption of heating,ventilation and air conditioning(HVAC)systems operating under various modes across different *** constructed multi-attribute and high-dimensional clustering vectors that encompass indoor and outdoor environmental parameters,along with historical energy consumption *** enhance the K-means algorithm,we employed statistical feature extraction and dimensional normalization(SFEDN)to facilitate data clustering and *** method,combined with the gated recurrent unit(GRU)prediction model employing adaptive training based on the Particle Swarm Optimization algorithm,was evaluated for robustness and stability through k-fold *** the clustering-based modeling framework,optimal submodels were configured based on the statistical features of historical 24-hour data to achieve dynamic prediction using multiple *** dynamic prediction models with SFEDN cluster showed a 11.9%reduction in root mean square error(RMSE)compared to static prediction,achieving a coefficient of determination(R2)of 0.890 and a mean absolute percentage error(MAPE)reduction of 19.9%.When compared to dynamic prediction based on single-attribute of HVAC systems energy consumption clustering modeling,RMSE decreased by 12.6%,R2 increased by 4.0%,and MAPE decreased by 26.3%.The dynamic prediction performance demonstrated that the SFEDN clustering method surpasses conventional clustering method,and multi-attribute clustering modeling outperforms single-attribute modeling.
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE service...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the *** IoE-based cloud computing services are located at remote locations without the control of the data *** data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security *** lack of knowledge about security capabilities and control over data raises several security *** Acid(DNA)computing is a biological concept that can improve the security of IoE big *** IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher *** paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access *** experimental results illustrated that DNACDS performs better than other DNA-based security *** theoretical security analysis of the DNACDS shows better resistance capabilities.
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
By leveraging the high maneuverability of the unmanned aerial vehicle(UAV) and the expansive coverage of the intelligent reflecting surface(IRS), a multi-IRS-assisted UAV communication system aimed at maximizing the s...
详细信息
By leveraging the high maneuverability of the unmanned aerial vehicle(UAV) and the expansive coverage of the intelligent reflecting surface(IRS), a multi-IRS-assisted UAV communication system aimed at maximizing the sum data rate of all users was investigated in this paper. This is achieved through the joint optimization of the trajectory and transmit beamforming of the UAV, as well as the passive phase shift of the IRS. Nevertheless, the initial problem exhibits a high degree of non-convexity, posing challenges for conventional mathematical optimization techniques in delivering solutions that are both quick and efficient while maintaining low complexity. To address this issue, a novel scheme called the deep reinforcement learning(DRL)-based enhanced cooperative reflection network(DCRN) was proposed. This scheme effectively identifies optimal strategies, with the long short-term memory(LSTM) network improving algorithm convergence by extracting hidden state information. Simulation results demonstrate that the proposed scheme outperforms the baseline scheme, manifesting substantial enhancements in sum rate and superior performance.
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an inte...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)*** this scheme,the preamble arrangement is combined with the access *** preamble arrangement is realized by preamble slices which is from the virtual preamble *** access devices learn to queue orderly by deep reinforcement *** orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access *** orderly queue is determined by interaction information among multiple *** the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of ***,the access performance of PSOQA is compared with other random contention schemes in different load *** results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
暂无评论