In the era of big data and growing privacy concerns, Federated Learning (FL) has emerged as a promising solution for collaborative model training while preserving user data privacy. However, FL faces challenges such a...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy conce...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy concerns within smart ***,existing methods struggle with efficiency and security when processing large-scale *** efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent *** paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data *** approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user *** also explores the application of Boneh Lynn Shacham(BLS)signatures for user *** proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous *** existing studies mainly focus on making predictions by considering users...
详细信息
Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous *** existing studies mainly focus on making predictions by considering users’single interactive *** recent efforts have been made to exploit multiple interactive behaviors,but they generally ignore the influences of different interactive behaviors and the noise in interactive *** address these problems,we propose a behavior-aware graph neural network for session-based ***,different interactive sequences are modeled as directed ***,the item representations are learned via graph neural ***,a sparse self-attention module is designed to remove the noise in behavior ***,the representations of different behavior sequences are aggregated with the gating mechanism to obtain the session *** results on two public datasets show that our proposed method outperforms all competitive *** source code is available at the website of GitHub.
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mis...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mismatch on the linearity of the SAR ADC. To reduce the number of capacitors, a hybrid architecture of a high 8-bit binary-weighted capacitor array and a low 6-bit resistor array is adopted by the digital-to-analog(DAC). The common-mode voltage VCM-based switching scheme is chosen to reduce the switching energy and area of the DAC. The time-domain comparator is employed to obtain lower power consumption. Sampling is performed through a gate voltage bootstrapped switch to reduce the nonlinear errors introduced when sampling the input signal. Moreover, the SAR logic and the whole calibration is totally implemented on-chip through digital integrated circuit(IC) tools such as design compiler, IC compiler, etc. Finally, a prototype is designed and implemented using 0.18 μm bipolar-complementary metal oxide semiconductor(CMOS)-double-diffused MOS 1.8 V CMOS technology. The measurement results show that the SAR ADC with on-chip bubble sorting calibration method achieves the signal-to-noise-and-distortion ratio of 69.75 dB and the spurious-free dynamic range of 83.77 dB.
In recent years,the demand for real-time data processing has been increasing,and various stream processing systems have *** the amount of data input to the stream processing system fluctuates,the computing resources r...
详细信息
In recent years,the demand for real-time data processing has been increasing,and various stream processing systems have *** the amount of data input to the stream processing system fluctuates,the computing resources required by the stream processing job will also *** resources used by stream processing jobs need to be adjusted according to load changes,avoiding the waste of computing *** present,existing works adjust stream processing jobs based on the assumption that there is a linear relationship between the operator parallelism and operator resource consumption(e.g.,throughput),which makes a significant deviation when the operator parallelism *** paper proposes a nonlinear model to represent operator *** divide the operator performance into three stages,the Non-competition stage,the Non-full competition stage,and the Full competition *** our proposed performance model,given the parallelism of the operator,we can accurately predict the CPU utilization and operator *** with actual experiments,the prediction error of our model is below 5%.We also propose a quick accurate auto-scaling(QAAS)method that uses the operator performance model to implement the auto-scaling of the operator parallelism of the Flink *** to previous work,QAAS is able to maintain stable job performance under load changes,minimizing the number of job adjustments and reducing data backlogs by 50%.
With the great development of Multi-Target Tracking(MTT)technologies,many MTT algorithms have been proposed with their own advantages and *** to the fact that requirements to MTT algorithms vary from the application s...
详细信息
With the great development of Multi-Target Tracking(MTT)technologies,many MTT algorithms have been proposed with their own advantages and *** to the fact that requirements to MTT algorithms vary from the application scenarios,performance evaluation is significant to select an appropriate MTT algorithm for the specific application *** this paper,we propose a performance evaluation method on the sets of trajectories with temporal dimension specifics to compare the estimated trajectories with the true *** proposed method evaluates the estimate results of an MTT algorithm in terms of tracking accuracy,continuity and ***,its computation is based on a multi-dimensional assignment problem,which is formulated as a computable form using linear *** enhance the influence of recent estimated states of the trajectories in the evaluation,an attention function is used to reweight the trajectory errors at different time ***,simulation results show that the proposed performance evaluation method is able to evaluate many aspects of the MTT *** evaluations are worthy for selecting suitable MTT algorithms in different application scenarios.
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing i...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing images often feature small target sizes and complex backgrounds, posing significant computational challenges for object detection tasks. To address this issue, this paper proposes a lightweight remote sensing images object detection algorithm based on YOLOv9. The proposed algorithm incorporates the SimRMB module, which effectively reduces computational complexity while improving the efficiency and accuracy of feature extraction. Through a dynamic attention mechanism, SimRMB is capable of focusing on important regions while minimizing background interference, and by integrating residual learning and skip connections, it ensures the stability of deep networks. To further enhance detection performance, the FasterRepNCSPELAN4 module is introduced, which employs PConv operations to reduce computational load and memory usage. It also utilizes dilated convolutions and DFC attention mechanisms to strengthen feature extraction, thereby increasing the efficiency and accuracy of object detection. Additionally, this study integrates the GhostModuleV2 module, which generates core feature maps and employs lightweight operations to create redundant features, greatly reducing the computational complexity of *** results show that on the SIMD dataset, the improved YOLOv9 model has a parameter size of 167.88 MB and GFLOPs of 208.6. Compared to the baseline YOLOv9 model (parameter size: 194.57 MB, GFLOPs: 239.0), the parameter size is reduced by 13.71%, GFLOPs are reduced by 12.72%, and detection accuracy is improved by 1.4%. These results demonstrate that the proposed lightweight YOLOv9 model effectively reduces computational overhead while maintaining excellent detection performance, providing an efficient solution for object detection tasks in resou
Wind field forecasting is crucial for human activities, but numerical weather prediction still has room to improve accuracy. In this paper, we formalize wind field forecast correction as a spatiotemporal sequence pred...
详细信息
Transition metal sulfides(TMS)hold great promise as anode materials for Li^(+)/Na^(+)***,their practical application still faces several challenges,such as inadequate electrical conductivity,substantial volume changes...
详细信息
Transition metal sulfides(TMS)hold great promise as anode materials for Li^(+)/Na^(+)***,their practical application still faces several challenges,such as inadequate electrical conductivity,substantial volume changes and a propensity for *** tackle these challenges,a 3D composite structure composed of graphene nanosheets crosslinked core−shell FeS_(2)@N,S co−doped porous carbon(FeS_(2)@NSC/GNs)is created by combining self−template polymerization with the graphene encapsulation *** characterization and analysis demonstrate the effectiveness of the self−template polymerization strategy in generating a porous core−shell structure,which facilitates the uniform dispersion and optimal contact of the FeS_(2) core within the carbon ***,the integration of graphene,alongside the porous carbon shell,introduces a sophisticated dual−protection mechanism against volume expansion and undesirable FeS_(2) ***,the resulting 3D architecture enables efficient electron/ion transport and provides abundant sites for Li^(+)/Na^(+)*** these inherent benefits,the FeS_(2)@NSC/GNs composite exhibits significantly improved lithium/sodium storage performance in comparison to the ***,our proposed approach offers valuable guidance for the construction of advanced anodes for lithium/sodium−ion batteries.
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an inte...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)*** this scheme,the preamble arrangement is combined with the access *** preamble arrangement is realized by preamble slices which is from the virtual preamble *** access devices learn to queue orderly by deep reinforcement *** orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access *** orderly queue is determined by interaction information among multiple *** the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of ***,the access performance of PSOQA is compared with other random contention schemes in different load *** results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
暂无评论