作者:
Tarbă, NicolaeIrimescu, Ionela N.Pleavă, Ana M.Scarlat, Eugen N.Mihăilescu, MonaDoctoral School
Computer Science and Engineering Department Faculty of Automatic Control and Computers National University of Science and Technology POLITEHNICA Bucharest Romania Applied Sciences Doctoral School
National University of Science and Technology POLITEHNICA Bucharest Romania CAMPUS Research Center
National University of Science and Technology POLITEHNICA Bucharest Romania Physics Dept
National University of Science and Technology POLITEHNICA Bucharest Romania Physics Dept
Research Center for Applied Sciences in Engineering National University of Science and Technology POLITEHNICA Bucharest Romania
We introduce a method to evaluate the similarities between classes of objects based on the confusion matrices coming from the multi-class machine learning (ML) predictors that operate in the vector space generated by ...
详细信息
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)*** time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and ***,it is necessar...
详细信息
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)*** time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and ***,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is ***,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between ***,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)*** avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained *** on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal *** simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.
Modeling in computer Vision has evolved to MLPs. Vision MLPs naturally lack local modeling capability, to which the simplest treatment is combined with convolutional layers. Convolution, famous for its sliding window ...
详细信息
War trauma data, a core element of military research, have been attracting significant attention from several countries, despite limited availability. In this study, we propose a data augmentation method for war traum...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle wi...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall *** address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh *** FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh *** Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline ***,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
This paper studies asynchronous energy-to-peak control for 2D Roesser-type Markov jump systems (RTMJSs). Given the practical challenge of obtaining the system state, output-feedback is utilized for closing the control...
详细信息
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element *** the...
详细信息
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element *** the constraint of a reconfigurable array,the LSLGM algorithm schedules node from a ready queue to the current reconfigurable cell array *** mapping a node,its successor’s indegree value will be dynamically *** its successor’s indegree is zero,it will be directly scheduled to the ready queue;otherwise,the predecessor must be dynamically *** the predecessor cannot be mapped,it will be scheduled to a blocking *** dynamically adjust the ready node scheduling order,the scheduling function is constructed by exploiting factors,such as node number,node level,and node *** with the loop subgraph-level mapping algorithm,experimental results show that the total cycles of the LSLGM algorithm decreases by an average of 33.0%(PEA44)and 33.9%(PEA_(7×7)).Compared with the epimorphism map algorithm,the total cycles of the LSLGM algorithm decrease by an average of 38.1%(PEA_(4×4))and 39.0%(PEA_(7×7)).The feasibility of LSLGM is verified.
Die-stacked dynamic random access memory(DRAM)caches are increasingly advocated to bridge the performance gap between the on-chip cache and the main *** fully realize their potential,it is essential to improve DRAM ca...
详细信息
Die-stacked dynamic random access memory(DRAM)caches are increasingly advocated to bridge the performance gap between the on-chip cache and the main *** fully realize their potential,it is essential to improve DRAM cache hit rate and lower its cache hit *** order to take advantage of the high hit-rate of set-association and the low hit latency of direct-mapping at the same time,we propose a partial direct-mapped die-stacked DRAM cache called *** design is motivated by a key observation,i.e.,applying a unified mapping policy to different types of blocks cannot achieve a high cache hit rate and low hit latency *** address this problem,P3DC classifies data blocks into leading blocks and following blocks,and places them at static positions and dynamic positions,respectively,in a unified set-associative *** also propose a replacement policy to balance the miss penalty and the temporal locality of different *** addition,P3DC provides a policy to mitigate cache thrashing due to block type *** results demonstrate that P3DC can reduce the cache hit latency by 20.5%while achieving a similar cache hit rate compared with typical set-associative caches.P3DC improves the instructions per cycle(IPC)by up to 66%(12%on average)compared with the state-of-the-art direct-mapped cache—BEAR,and by up to 19%(6%on average)compared with the tag-data decoupled set-associative cache—DEC-A8.
Recognition of text in images has become increasingly important with the rapid development of cameras, and the main technology involved is Optical Character Recognition (OCR). In order to enhance the recognition accur...
详细信息
Scratch is an innovative and the most popular block-based Visual Programming Language designed for beginners to learn programming effectively. However, it lacks the capacity to allow users to learn and solve larger re...
详细信息
暂无评论