The perception of salty taste is crucial for individuals to make healthy food ***,the brain electrophysiological signals underlying salty taste perception have been poorly *** this study,electroencephalography(EEG)was...
详细信息
The perception of salty taste is crucial for individuals to make healthy food ***,the brain electrophysiological signals underlying salty taste perception have been poorly *** this study,electroencephalography(EEG)was used to record brain activity induced by Na Cl solution as a salty taste stimulus.A combination of a custom delivery device and stimulation paradigm was employed to preserve the salty taste signal clearly.A stimulus-response capture method was proposed that could adapt to individual differences in brain responses to salty taste and accurately segment salty taste response *** this method to the EEG processing workflow can form a complete data processing *** results showed that the neural response induced by salty taste reached a high activity level in the initial stage within a short period(0.2 s),and there was a sustained periodic response within 0.75 s after the ***,the salty taste information in the EEG signal was decoded,and discrimination of 2 similar concentrations of salty taste solutions was achieved far above the chance level(average identification rate:89.66%).This study demonstrated experimental paradigms and research methods for understanding salty taste perception,which could provide references for research on other basic tastes.
This survey covers the new trend of privacy-preserving communication frameworks in machine learning in the FL, DP and SMPC for cyber threat detection domains. The specific research performed between the year of 2020 a...
详细信息
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict softwa...
详细信息
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict software bugs,but a more precise and general approach is *** bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning ***,these studies are not generalized and efficient when extended to other ***,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification *** methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a *** National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were *** reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.
Advent of GAN networks has enabled several tasks such as text to face generation easier. It helps in synthesizing several instances of data from the actual data. It gives an idea on new possibilities for existing data...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mis...
详细信息
This article designs a 14-bit successive approximation register analog-to-digital converter(SAR ADC).A novel digital bubble sorting calibration method is proposed and applied to eliminate the effect of capacitor mismatch on the linearity of the SAR ADC. To reduce the number of capacitors, a hybrid architecture of a high 8-bit binary-weighted capacitor array and a low 6-bit resistor array is adopted by the digital-to-analog(DAC). The common-mode voltage VCM-based switching scheme is chosen to reduce the switching energy and area of the DAC. The time-domain comparator is employed to obtain lower power consumption. Sampling is performed through a gate voltage bootstrapped switch to reduce the nonlinear errors introduced when sampling the input signal. Moreover, the SAR logic and the whole calibration is totally implemented on-chip through digital integrated circuit(IC) tools such as design compiler, IC compiler, etc. Finally, a prototype is designed and implemented using 0.18 μm bipolar-complementary metal oxide semiconductor(CMOS)-double-diffused MOS 1.8 V CMOS technology. The measurement results show that the SAR ADC with on-chip bubble sorting calibration method achieves the signal-to-noise-and-distortion ratio of 69.75 dB and the spurious-free dynamic range of 83.77 dB.
A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. B...
详细信息
A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. By smarter, we mean that the city operation will be more efficient, cost-effective,energy-saving, be more connected, more secure, and more environmentally friendly. As such, a smartcity is typically defined as a city that has a strong integration with ICT in all its components, includingits physical components, social components, and business components [1,2].
By integrating smart grid technology with home energy management systems, households can monitor and optimise their energy consumption. This allows for more efficient use of energy resources, reducing waste and loweri...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingt
Today, all countries have a socio-economic concern about the healthcare services. Advanced healthcare systems leverage technology, such as the Internet of Things (IoT), to enhance quality and reduce costs. IoT integra...
详细信息
Deepfake detection aims to mitigate the threat of manipulated content by identifying and exposing forgeries. However, previous methods primarily tend to perform poorly when confronted with cross-dataset scenarios. To ...
详细信息
暂无评论