The Traveling Salesman Problem (TSP) seeks the shortest closed tour that visits each city once and returns to the starting city. This problem is NP-hard, so it is not easy to solve using conventional methods. The grey...
详细信息
Diabetes retinopathy (DR) is one of the complications of diabetes. Early diagnosis of retinopathy is helpful to avoid vision loss or blindness. The difficulty of this task lies in the significant differences in the si...
详细信息
In the electronic manufacturing industry, accurate detection of PCB defects is crucial as it directly impacts product quality and reliability. The primary challenges in PCB defect detection include missed detections a...
详细信息
With the development of deep learning and computer vision, face detection has achieved rapid progress owing. Face detection has several application domains, including identity authentication, security protection, medi...
详细信息
Model performance has been significantly enhanced by channel attention. The average pooling procedure creates skewness, lowering the performance of the network architecture. In the channel attention approach, average ...
详细信息
This paper introduces a new network model - the Image Guidance Encoder-Decoder Model (IG-ED), designed to enhance the efficiency of image captioning and improve predictive accuracy. IG-ED, a fusion of the convolutiona...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In thi...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of large multimodal models, such as GPT4V and Gemini, in various text-related visual tasks including text recognition, scene text-centric visual question answering(VQA), document-oriented VQA, key information extraction(KIE), and handwritten mathematical expression recognition(HMER). To facilitate the assessment of optical character recognition(OCR) capabilities in large multimodal models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression *** importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal *** evaluation pipeline and benchmark are available at https://***/Yuliang-Liu/Multimodal OCR.
Concrete is a vital component in modern construction, prized for its strength, durability, and versatility. Accurately determining the quantities of concrete components is crucial in civil engineering applications to ...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
暂无评论