The rapid development of Internet of things(Io T) and edge computing technologies has brought forth numerous possibilities for the intelligent and digital future. The frequent communication and interaction between dev...
详细信息
The rapid development of Internet of things(Io T) and edge computing technologies has brought forth numerous possibilities for the intelligent and digital future. The frequent communication and interaction between devices inevitably generate a large amount of sensitive information. Deploying a blockchain network to store sensitive data is crucial for ensuring privacy and security. The openness and synchronicity of blockchain networks give rise to challenges such as transaction privacy and storage capacity issues, significantly impeding their development in the context of edge computing and Io T. This paper proposes a reliable fog computing service solution based on a blockchain fog architecture. This paper stores data files in the inter planetary file system(IPFS) and encrypts the file hash values used for retrieving data files with stream cipher encryption. It employs a steganographic transmission technique leveraging Alpha Zero's Gomoku algorithm to discretely transmit the stream cipher key across the blockchain network without a carrier, thus achieving dual encryption. This approach aims to mitigate the storage burden on the blockchain network while ensuring the security of transaction data. Experimental results demonstrate that the model enhances the transmission capacity of confidential information from kilobytes(KB) to megabytes(MB) and exhibits high levels of covert and security features.
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two...
详细信息
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two terms hold a hypernymy relation or *** research on hypernym detection and discovery tasks projects a term into various semantic spaces with single mapping *** their success,these methods may not be adequate in capturing complex semantic relevance between hyponym/hypernymy pairs in two ***,they may fall short in modeling the hierarchical structure in the hypernymy relations,which may help them learn better term ***,the polysemy phenomenon that hypernyms may express distinct senses is *** this paper,we propose a Multi-Projection Recurrent model(MPR)to simultaneously capture the hierarchical relationships between terms and deal with diverse senses caused by the polysemy ***,we build a multi-projection mapping block to deal with the polysemy phenomenon,which learns various word senses by multiple ***,we adopt a hierarchy-aware recurrent block with the recurrent operation followed by a multi-hop aggregation module to capture the hierarchical structure of hypernym *** on 11 benchmark datasets in various task settings illustrate that our multi-projection recurrent model outperforms the *** experimental analysis and case study demonstrate that our multi-projection module and the recurrent structure are effective for hypernym detection and discovery tasks.
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1...
详细信息
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1], [2].
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of softwareengineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of softwareengineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in softwareengineering,and iTrust Electronic Health Care System.
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
Non-coding RNAs (ncRNAs), which do not encode proteins, have been implicated in chemotherapy resistance in cancer treatment. Given the high costs and time requirements of traditional biological experiments, there is a...
详细信息
In multi-institutional patient data sharing scenarios, maintaining fine-grained access control while safeguarding privacy and adapting to real-world environments is crucial. Traditional attribute-based encryption (ABE...
详细信息
暂无评论