Die-stacked dynamic random access memory(DRAM)caches are increasingly advocated to bridge the performance gap between the on-chip cache and the main *** fully realize their potential,it is essential to improve DRAM ca...
详细信息
Die-stacked dynamic random access memory(DRAM)caches are increasingly advocated to bridge the performance gap between the on-chip cache and the main *** fully realize their potential,it is essential to improve DRAM cache hit rate and lower its cache hit *** order to take advantage of the high hit-rate of set-association and the low hit latency of direct-mapping at the same time,we propose a partial direct-mapped die-stacked DRAM cache called *** design is motivated by a key observation,i.e.,applying a unified mapping policy to different types of blocks cannot achieve a high cache hit rate and low hit latency *** address this problem,P3DC classifies data blocks into leading blocks and following blocks,and places them at static positions and dynamic positions,respectively,in a unified set-associative *** also propose a replacement policy to balance the miss penalty and the temporal locality of different *** addition,P3DC provides a policy to mitigate cache thrashing due to block type *** results demonstrate that P3DC can reduce the cache hit latency by 20.5%while achieving a similar cache hit rate compared with typical set-associative caches.P3DC improves the instructions per cycle(IPC)by up to 66%(12%on average)compared with the state-of-the-art direct-mapped cache—BEAR,and by up to 19%(6%on average)compared with the tag-data decoupled set-associative cache—DEC-A8.
Graph classification, aiming at learning the graph-level representations for effective class assignments, has received outstanding achievements, which heavily relies on high-quality datasets that have balanced class d...
详细信息
Traffic flow prediction plays a key role in the construction of intelligent transportation ***,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very *** of the existing studies ar...
详细信息
Traffic flow prediction plays a key role in the construction of intelligent transportation ***,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very *** of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between ***,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial *** paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic *** combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic *** on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.
The ability to recommend candidate locations for service facility placement is crucial for the success of urban planning. Whether a location is suitable for establishing new facilities is largely determined by its pot...
详细信息
The ability to recommend candidate locations for service facility placement is crucial for the success of urban planning. Whether a location is suitable for establishing new facilities is largely determined by its potential popularity. However, it is a non-trivial task to predict popularity of candidate locations due to three significant challenges: 1) the spatio-temporal behavior correlations of urban dwellers, 2) the spatial correlations between candidate locations and existing facilities, and 3) the temporal auto-correlations of locations themselves. To this end, we propose a novel semi-supervised learning model, Spatio-Temporal Graph Convolutional and Recurrent Networks (STGCRN), aiming for popularity prediction and location recommendation. Specifically, we first partition the urban space into spatial neighborhood regions centered by locations, extract the corresponding features, and develop the location correlation graph. Next, a contextual graph convolution module based on the attention mechanism is introduced to incorporate local and global spatial correlations among locations. A recurrent neural network is proposed to capture temporal dependencies between locations. Furthermore, we adopt a location popularity approximation block to estimate the missing popularity from both the spatial and temporal domains. Finally, the overall implicit characteristics are concatenated and then fed into the recurrent neural network to obtain the ultimate popularity. The extensive experiments on two real-world datasets demonstrate the superiority of the proposed model compared with state-of-the-art baselines.
Biomedical Named Entity Recognition (BioNER) plays a crucial role in automatically identifying specific categories of entities from biomedical texts. Currently, region-based methods have shown promising performance in...
详细信息
Vision-and-Language navigation (VLN) requires an agent to navigate in unseen environment by following natural language instruction. For task completion, the agent needs to align and integrate various navigation modali...
详细信息
Web scraping is a powerful technique that extracts data from websites, enabling automated data collection, enhancing data analysis capabilities, and minimizing manual data entry efforts. Existing methods, wrappers-bas...
详细信息
Diagnosis prediction is becoming crucial to develop healthcare plans for patients based on Electronic Health Records (EHRs). Existing works usually enhance diagnosis prediction via learning accurate disease representa...
详细信息
The 5G mobile Internet facilitates contents generation for online communities and platforms through human-to-human ***,a well-known online community,uses wiki technology to build an encyclopedia through collective int...
详细信息
The 5G mobile Internet facilitates contents generation for online communities and platforms through human-to-human ***,a well-known online community,uses wiki technology to build an encyclopedia through collective intelligence and *** wiki systems adopt a centralized implementation,and while existing studies have optimized the efficiency of the wiki systems'centralized implementation,these systems still suffer from a lot of problems,for example,opacity and *** the years,blockchain has brought a flurry of fervour and decentralization to the system architecture,meanwhile giving users a sense of trust and ***,an innovative blockchain-enabled wiki framework called DecWiki is proposed to build one transparent,truthful,collaborative and autonomous *** several participatory design iterations,we present DecWiki's detailed architecture and its implementation in the form of a smart contract and use the interplanetary file system to complement the big data ***,we use the trusted execution environment to secure sensitive information in the wireless ***,the system overhead and the acceptance of the prototype are *** experiments present its significant performance.
Regularized system identification has become the research frontier of system identification in the past *** related core subject is to study the convergence properties of various hyper-parameter estimators as the samp...
详细信息
Regularized system identification has become the research frontier of system identification in the past *** related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to *** this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been ***,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is *** general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance ***,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter *** this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting ***,we run numerical simulations to demonstrate the efficacy of ourtheoretical results.
暂无评论