咨询与建议

限定检索结果

文献类型

  • 108 篇 会议
  • 104 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 168 篇 工学
    • 125 篇 计算机科学与技术...
    • 105 篇 软件工程
    • 31 篇 信息与通信工程
    • 22 篇 控制科学与工程
    • 14 篇 机械工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 8 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 7 篇 动力工程及工程热...
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
  • 65 篇 理学
    • 28 篇 数学
    • 17 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 10 篇 物理学
    • 9 篇 化学
    • 9 篇 系统科学
  • 40 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 13 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 8 篇 法学
    • 6 篇 法学
  • 3 篇 经济学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5 篇 semantics
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 blockchain
  • 3 篇 scalability
  • 3 篇 regression analy...
  • 3 篇 computer archite...
  • 3 篇 big data
  • 3 篇 software as a se...
  • 3 篇 stochastic syste...
  • 3 篇 students
  • 3 篇 cloud computing
  • 3 篇 forecasting
  • 3 篇 data models
  • 2 篇 surveys
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 safety

机构

  • 39 篇 state key labora...
  • 24 篇 state key lab of...
  • 21 篇 school of comput...
  • 17 篇 state key labora...
  • 8 篇 beijing advanced...
  • 7 篇 department of co...
  • 5 篇 university of ch...
  • 5 篇 state key lab of...
  • 4 篇 state key labora...
  • 4 篇 state key lab. o...
  • 4 篇 state key labora...
  • 4 篇 zhongguancun lab...
  • 4 篇 state key labora...
  • 3 篇 department of co...
  • 3 篇 hedps capt colle...
  • 3 篇 state key lab.of...
  • 3 篇 department of in...
  • 3 篇 school of comput...
  • 3 篇 department of co...
  • 3 篇 state key lab of...

作者

  • 8 篇 peng hao
  • 8 篇 li zhoujun
  • 8 篇 liu xianglong
  • 7 篇 xu ke
  • 6 篇 shilong ma
  • 6 篇 yu philip s.
  • 5 篇 tao dacheng
  • 4 篇 li jianxin
  • 4 篇 xu jun
  • 4 篇 gong ruihao
  • 4 篇 rui li
  • 4 篇 wenjun wu
  • 4 篇 wu wenjun
  • 3 篇 zhang duo
  • 3 篇 cai chun
  • 3 篇 zhang linfeng
  • 3 篇 liang peng
  • 3 篇 bai xiao
  • 3 篇 york darrin m.
  • 3 篇 meikang qiu

语言

  • 188 篇 英文
  • 23 篇 其他
  • 2 篇 中文
检索条件"机构=State Key Lab of Software Development Environment Department of Computer Science and Engineering"
212 条 记 录,以下是81-90 订阅
排序:
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques
arXiv
收藏 引用
arXiv 2021年
作者: Tang, Shiyu Gong, Ruihao Wang, Yan Liu, Aishan Wang, Jiakai Chen, Xinyun Yu, Fengwei Liu, Xianglong Song, Dawn Yuille, Alan Torr, Philip H.S. Tao, Dacheng The State Key Lab of Software Development Environment Beihang University Beijing100191 China The SenseTime Beijing100191 China The Berkeley Artificial Intelligence Research Lab University of California Berkeley BerkeleyCA94701 United States The Department of Cognitive Science and Computer Science Johns Hopkins University BaltimoreMD21218 United States The Department of Engineering Science University of Oxford OxfordOX1 3PJ United Kingdom The JD Explore Academy Beijing101111 China
Deep neural networks (DNNs) are vulnerable to adversarial noises, which motivates the benchmark of model robustness. Existing benchmarks mainly focus on evaluating defenses, but there are no comprehensive studies of h... 详细信息
来源: 评论
Topic Model Based Android Malware Detection  12th
Topic Model Based Android Malware Detection
收藏 引用
12th International Conference on Security, Privacy, and Anonymity in Computation, Communication, and Storage, SpaCCS 2019
作者: Song, Yucai Chen, Yang Lang, Bo Liu, Hongyu Chen, Shaojie State Key Lab of Software Development Environment School of Computer Science and Engineering Beihang University Beijing100191 China National Computer Network Emergency Response Technical Team/Coordination Center of China Beijing100191 China
Nowadays, the security risks brought by Android malwares are increasing. Machine learning is considered as a potential solution for promoting the performance of malware detection. For machine learning based Android ma... 详细信息
来源: 评论
Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges
arXiv
收藏 引用
arXiv 2021年
作者: Ding, Jian Xue, Nan Xia, Gui-Song Bai, Xiang Yang, Wen Yang, Michael Ying Belongie, Serge Luo, Jiebo Datcu, Mihai Pelillo, Marcello Zhang, Liangpei The State Key Lab LIESMARS Wuhan University Wuhan430079 China The National Engineering Research Center for Multimedia Software School of Computer Science and Institute of Artificial Intelligence Wuhan University Wuhan430072 China The National Engineering Research Center for Multimedia Software School of Computer Science and Institute of Artificial Intelligence The State Key Lab. LIESMARS Wuhan University Wuhan430072 China The School of Electronic Information Huazhong University of Science and Technology Wuhan430079 China The School of Electronic Information The State Key Lab. LIESMARS Wuhan University Wuhan430072 China University of Twente Netherlands Department of Computer Science Cornell University Cornell Tech United States Department of Computer Science University of Rochester RochesterNY14627 United States 82234 Germany Romania DAIS Ca' Foscari University of Venice Italy
In the past decade, object detection has achieved significant progress in natural images but not in aerial images, due to the massive variations in the scale and orientation of objects caused by the bird’s-eye view o... 详细信息
来源: 评论
A comparative study of large-scale cluster workload traces via multiview analysis  21
A comparative study of large-scale cluster workload traces v...
收藏 引用
21st IEEE International Conference on High Performance Computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on Data science and Systems, HPCC/SmartCity/DSS 2019
作者: Ruan, Li Xu, Xiangrong Xiao, Limin Yuan, Feng Li, Yin Dai, Dong State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beihang University Beijing China Institute of Software Application Technology Guangzhou AND Chinese Academy of Sciences Guangzhou China Department of Computer Science University of North Carolina Charlotte CharlotteNC United States
Understanding the characteristics of workloads of the large-scale Clusters is the key to diagnose the system bottlenecks, making optimal configuration decisions, improving the system throughput and resource usage. Due... 详细信息
来源: 评论
Record High Temperatures in the Ocean in 2024
收藏 引用
Advances in Atmospheric sciences 2025年 第6期42卷 1092-1109页
作者: Lijing CHENG John ABRAHAM Kevin E.TRENBERTH James REAGAN Huai-Min ZHANG Andrea STORTO Karina VON SCHUCKMANN Yuying PAN Yujing ZHU Michael E.MANN Jiang ZHU Fan WANG Fujiang YU Ricardo LOCARNINI John FASULLO Boyin HUANG Garrett GRAHAM Xungang YIN Viktor GOURETSKI Fei ZHENG Yuanlong LI Bin ZHANG Liying WAN Xingrong CHEN Dakui WANG Licheng FENG Xiangzhou SONG Yulong LIU Franco RESEGHETTI Simona SIMONCELLI Gengxin CHEN Rongwang ZHANG Alexey MISHONOV Zhetao TAN Wangxu WEI Huifeng YUAN Guancheng LI Qiuping REN Lijuan CAO Yayang LU Juan DU Kewei LYU Albertus SULAIMAN Michael MAYER Huizan WANG Zhanhong MA Senliang BAO Henqian YAN Zenghong LIU Chunxue YANG Xu LIU Zeke HAUSFATHER Tanguy SZEKELY Flora GUES National Key Laboratory of Earth System Numerical Modeling and Application Institute of Atmospheric PhysicsChinese Academy of SciencesBeijing 100029China University of St.Thomas School of EngineeringMinnesota 55105USA NSF National Center for Atmospheric Research BoulderColorado 80307USA University of Auckland Auckland 0630New Zealand National Oceanic and Atmospheric Administration National Centers for Environmental InformationSilver SpringMaryland 20910USA National Oceanic and Atmospheric Administration National Centers for Environmental InformationAshevilleNC 28801USA National Research Council(CNR)Institute of Marine Sciences(ISMAR) Rome 00133Italy Mercator Ocean International Toulouse 31400France Department of Earth and Environmental Science University of PennsylvaniaPhiladelphiaPennsylvania 19104USA Institute of Oceanology Chinese Academy of SciencesQingdao 266071China National Marine Environmental Forecasting Center Ministry of Natural Resources of ChinaBeijing 100081China North Carolina Institute for Climate Studies(NCICS) North Carolina State UniversityAshevilleNC 28804USA Oceanographic Data Center Chinese Academy of SciencesQingdao 266071China College of Oceanography Hohai UniversityNanjing 210098China National Marine Data and Information Service Tianjin 300171China Istituto Nazionale di Geofisica e Vulcanologia Sede di BolognaBologna 40128Italy South China Sea Institute of Oceanology Chinese Academy of SciencesGuangzhou 510301China ESSIC/CISESS-MD University of MarylandCollege ParkMD 20740USA Computer Network Information Center Chinese Academy of SciencesBeijing 100083China Eco-Environmental Monitoring and Research Center Pearl River Valley and South China Sea Ecology and Environment AdministrationMinistry of Ecology and EnvironmentGuangzhou 510611China National Meteorological Information Center China Meteorological AdministrationBeijing 100081China International Research Center of Big Data for Sustainable Development Goals Beijing 100094China Xiamen Universit
Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temper... 详细信息
来源: 评论
Interpretable Spatiotemporal Deep Learning Model for Traffic Flow Prediction Based on Potential Energy Fields
Interpretable Spatiotemporal Deep Learning Model for Traffic...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Jiahao Ji Jingyuan Wang Zhe Jiang Jingtian Ma Hu Zhang School of Computer Science and Engineering Beihang University Beijing China State Key Laboratory of Software Development Environment Beihang University Beijing China MOE Engineering Research Center of ACAT Beihang University Beijing China Department of Computer Science The University of Alabama Tuscaloosa Alabama USA
Traffic flow prediction is of great importance in traffic management and public safety, but is challenging due to the complex spatial-temporal dependencies as well as temporal dynamics. Existing work either focuses on... 详细信息
来源: 评论
On PID control for synchronization of complex dynamical network with delayed nodes
收藏 引用
science China(Technological sciences) 2019年 第8期62卷 1412-1422页
作者: GU HaiBo Lv JinHu LIN ZongLi Key Laboratory of Systems and Control Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing 100049 China School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment and Beijing Advanced Innovation Center for Big Data and Brain Machine Intelligence Beihang University Beijing 100083 China Charles L. Brown Department of Electrical and Computer Engineering University of Virginia Charlottesville VA 22904-4743 USA
Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in c... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
A Learning Analytic Model for Smart Classroom
收藏 引用
Asia Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, APWeb-WAIM 2018
作者: Wang, Qunbo Wu, Wenjun Qi, Yuxing State Key Lab of Software Development Environment Department of Computer Science and Engineering Beihang University Beijing China
With the popularity of Smart Classroom, it is necessary to study corresponding learning analytic methods to assist instructors. However, little research has investigated analyzing hidden state in class, which is an im... 详细信息
来源: 评论
A Learning Analytics System for Cognition Analysis in Online Learning Community
收藏 引用
Asia Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, APWeb-WAIM 2018
作者: Wu, Yinan Wu, Wenjun State Key Lab of Software Development Environment Department of Computer Science and Engineering Beihang University Beijing China
While cognitive behaviors and social network structure in Online Learning Community (OLC) have been studied in the past, few research has proposed a model linking the two important factors to analyze students’ cognit... 详细信息
来源: 评论