咨询与建议

限定检索结果

文献类型

  • 1,103 篇 期刊文献
  • 885 篇 会议
  • 1 册 图书

馆藏范围

  • 1,989 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,268 篇 工学
    • 705 篇 计算机科学与技术...
    • 572 篇 软件工程
    • 179 篇 电子科学与技术(可...
    • 174 篇 信息与通信工程
    • 170 篇 电气工程
    • 125 篇 控制科学与工程
    • 123 篇 化学工程与技术
    • 104 篇 材料科学与工程(可...
    • 95 篇 生物工程
    • 91 篇 光学工程
    • 79 篇 网络空间安全
    • 71 篇 机械工程
    • 61 篇 仪器科学与技术
    • 57 篇 力学(可授工学、理...
    • 50 篇 生物医学工程(可授...
    • 44 篇 动力工程及工程热...
    • 35 篇 冶金工程
    • 34 篇 核科学与技术
  • 1,014 篇 理学
    • 553 篇 物理学
    • 383 篇 数学
    • 121 篇 统计学(可授理学、...
    • 120 篇 化学
    • 115 篇 生物学
    • 79 篇 地球物理学
    • 59 篇 系统科学
  • 219 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 85 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 39 篇 医学
    • 33 篇 临床医学
  • 38 篇 法学
    • 32 篇 社会学
  • 16 篇 经济学
  • 16 篇 军事学
  • 13 篇 农学
  • 9 篇 教育学
  • 4 篇 文学
  • 1 篇 艺术学

主题

  • 40 篇 feature extracti...
  • 36 篇 semantics
  • 35 篇 deep learning
  • 30 篇 machine learning
  • 29 篇 network security
  • 29 篇 training
  • 28 篇 cosmic rays
  • 26 篇 security
  • 24 篇 cryptography
  • 23 篇 software
  • 20 篇 malware
  • 20 篇 gamma rays
  • 17 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 data models
  • 16 篇 algorithm design...
  • 14 篇 network topology
  • 14 篇 topology
  • 13 篇 data mining
  • 12 篇 computer archite...

机构

  • 620 篇 state key labora...
  • 106 篇 university of sc...
  • 96 篇 hebei normal uni...
  • 96 篇 state key labora...
  • 95 篇 tianfu cosmic ra...
  • 95 篇 university of ch...
  • 93 篇 yunnan observato...
  • 87 篇 department of ph...
  • 83 篇 school of physic...
  • 82 篇 key laboratory f...
  • 80 篇 center for astro...
  • 79 篇 college of physi...
  • 78 篇 school of physic...
  • 77 篇 institute of fro...
  • 77 篇 moscow institute...
  • 76 篇 school of physic...
  • 76 篇 national space s...
  • 74 篇 school of astron...
  • 66 篇 national astrono...
  • 66 篇 department of en...

作者

  • 80 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 77 篇 jiang k.
  • 76 篇 bastieri d.
  • 72 篇 danzengluobu
  • 71 篇 liu d.
  • 70 篇 kuleshov d.
  • 68 篇 li cheng
  • 68 篇 chen m.j.
  • 68 篇 liu s.m.
  • 68 篇 huang d.h.
  • 68 篇 dai h.l.
  • 67 篇 guo y.q.
  • 66 篇 li xin
  • 66 篇 bao y.w.
  • 66 篇 liu b.
  • 65 篇 hu h.b.
  • 62 篇 min z.
  • 59 篇 qin j.j.

语言

  • 1,858 篇 英文
  • 89 篇 其他
  • 45 篇 中文
检索条件"机构=State Key-Laboratory of Mathematical Engineering and Advanced Computing"
1989 条 记 录,以下是1301-1310 订阅
排序:
Observation of topological edge states in thermal diffusion
arXiv
收藏 引用
arXiv 2021年
作者: Hu, Hao Han, Song Yang, Yihao Liu, Dongjue Xue, Haoran Liu, Gui-Geng Cheng, Zheyu Wang, Qi Jie Zhang, Shuang Zhang, Baile Luo, Yu School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore639798 Singapore Interdisciplinary Center for Quantum Information State Key Laboratory of Modern Optical Instrumentation College of Information Science and Electronic Engineering Zhejiang University Hangzhou310027 China ZJU-Hangzhou Global Science and Technology Innovation Center Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang Zhejiang University Hangzhou310027 China International Joint Innovation Center ZJU-UIUC Institute Zhejiang University Haining314400 China Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore637371 Singapore Department of Physics University of Hong Kong Hong Kong Department of Electrical & Electronic Engineering University of Hong Kong China Centre for Disruptive Photonic Technologies Nanyang Technological University Singapore637371 Singapore
The topological band theory predicts that bulk materials with nontrivial topological phases support topological edge states. This phenomenon is universal for various wave systems and has been widely observed for elect... 详细信息
来源: 评论
Constraints on Ultra Heavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Zhen Aharonian, F. An, Q. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Cai, J.T. Cao, Q. Cao, W.Y. Cao, Zhe Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, Liang Chen, Lin Chen, Long Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu della Volpe, D. Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, K. Feng, C.F. Feng, L. Feng, S.H. Feng, X.T. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. He, H.H. He, H.N. He, J.Y. He, X.B. He, Y. Heller, M. Hor, Y.K. Hou, B.W. Hou, C. Hou, X. Hu, H.B. Hu, Q. Hu, S.C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Z.C. Ji, X.L. Jia, H.Y. Jia, K. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Ke, T. Kuleshov, D. Kurinov, K. Li, B.B. Li, Cheng Li, Cong Li, D. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, Jian Li, Jie Li, K. Li, W.L. Li, W.L. Li, X.R. Li, Xin Li, Y.Z. Li, Zhe Li, Zhuo Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Lu, R. Luo, Q. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ou, Z.W. Pang, B.Y. Pattarakijwanich, P. Pei, Z.Y. Qi, M.Y. Qi, Y.Q. Qiao, B.Q. Qin, J.J. Ruffolo, D. Sáiz, A. Semikoz, D. Shao, C.Y. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu.V. Stepanov, V. Su, Y. Sun, Q.N. Sun, X.N. Sun, Z.B. Key Laboratory of Particle Astrophysics Experimental Physics Division Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China Tianfu Cosmic Ray Research Center Sichuan Chengdu610000 China Dublin Institute for Advanced Studies 31 Fitzwilliam Place 2 Dublin Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 Heidelberg69029 Germany State Key Laboratory of Particle Detection and Electronics China University of Science and Technology of China Anhui Hefei230026 China School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Hebei Normal University Hebei Shijiazhuang050024 China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China Key Laboratory of Cosmic Rays Tibet University Ministry of Education Tibet Lhasa850000 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Sun Yat-sen University Guangdong Zhuhai519000 China Guangdong Guangzhou510275 China Sun Yat-sen University Guangdong Zhuhai519000 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Département de Physique Nucléaire et Corpusculaire Faculté de Sciences Université de Genève 24 Quai Ernest Ansermet Geneva1211 Switzerland Institute of Frontier and Interdisciplinary Science Shandon
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from ... 详细信息
来源: 评论
Optimization of performance of the KM2A full array using the Crab Nebula
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Zhen Aharonian, F. An, Q. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Cai, J.T. Cao, Q. Cao, W.Y. Cao, Zhe Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, Liang Chen, Lin Chen, Long Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu della Volpe, D. Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, K. Feng, C.F. Feng, L. Feng, S.H. Feng, X.T. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. He, H.H. He, H.N. He, J.Y. He, X.B. He, Y. Heller, M. Hor, Y.K. Hou, B.W. Hou, C. Hou, X. Hu, H.B. Hu, Q. Hu, S.C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Z.C. Ji, X.L. Jia, H.Y. Jia, K. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Ke, T. Kuleshov, D. Kurinov, K. Li, B.B. Li, Cheng Li, Cong Li, D. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, Jian Li, Jie Li, K. Li, W.L. Li, W.L. Li, X.R. Li, Xin Li, Y.Z. Li, Zhe Li, Zhuo Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Lu, R. Luo, Q. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ou, Z.W. Pang, B.Y. Pattarakijwanich, P. Pei, Z.Y. Qi, M.Y. Qi, Y.Q. Qiao, B.Q. Qin, J.J. Ruffolo, D. Sáiz, A. Semikoz, D. Shao, C.Y. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu.V. Stepanov, V. Su, Y. Sun, Q.N. Sun, X.N. Sun, Z.B. Tam, P.H.T. Tang, Q.W. Tang, Z.B. Key Laboratory of Particle Astrophyics Experimental Physics Division Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China Tianfu Cosmic Ray Research Center Sichuan Chengdu610000 China Dublin Institute for Advanced Studies 31 Fitzwilliam Place 2 Dublin Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 Heidelberg69029 Germany State Key Laboratory of Particle Detection and Electronics China University of Science and Technology of China Anhui Hefei230026 China School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Hebei Normal University Hebei Shijiazhuang050024 China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China Key Laboratory of Cosmic Rays Tibet University Ministry of Education Tibet Lhasa850000 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Sun Yat-sen University Zhuhai519000 China Guangdong Guangzhou510275 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Département de Physique Nucléaire et Corpusculaire Faculté de Sciences Université de Genève 24 Quai Ernest Ansermet Geneva1211 Switzerland Institute of Frontier and Interdisciplinary Science Shandong University Shandong Qingdao266237 China APC Universit'e Paris Cit
The full array of the Large High Altitude Air Shower Observatory (LHAASO) has been in operation since July 2021. For its kilometer-square array (KM2A), we have optimized the selection criteria for very high and ultra-... 详细信息
来源: 评论
Adaptive NMS: Refining pedestrian detection in a crowd
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Songtao Huang, Di Wang, Yunhong Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing100191
Pedestrian detection in a crowd is a very challenging issue. This paper addresses this problem by a novel NonMaximum Suppression (NMS) algorithm to better refine the bounding boxes given by detectors. The contribution... 详细信息
来源: 评论
Adaptive unimodal cost volume filtering for deep stereo matching
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Youmin Chen, Yimin Bai, Xiao Yu, Suihanjin Yu, Kun Li, Zhiwei Yang, Kuiyuan State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China DeepMotion
state-of-the-art deep learning based stereo matching approaches treat disparity estimation as a regression problem, where loss function is directly defined on true disparities and their estimated ones. However, dispar... 详细信息
来源: 评论
STS MICCAI 2023 Challenge: Grand challenge on 2D and 3D semi-supervised tooth segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Yaqi Zhang, Yifan Chen, Xiaodiao Wang, Shuai Qian, Dahong Ye, Fan Xu, Feng Zhang, Hongyuan Zhang, Qianni Wu, Chengyu Li, Yunxiang Cui, Weiwei Luo, Shan Wang, Chengkai Li, Tianhao Liu, Yi Feng, Xiang Zhou, Huiyu Liu, Dongyun Wang, Qixuan Lin, Zhouhao Song, Wei Li, Yuanlin Wang, Bing Wang, Chunshi Chen, Qiupu Li, Mingqian College of Media Engineering Communication University of Zhejiang Hangzhou China State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China Lishui University School of Medicine Hangzhou Geriatric Stomatology Hospital Hangzhou Dental Hospital Group Hangzhou China School of Computer Science and Technology Hangzhou Dianzi University Hangzhou China School of Cyberspace Hangzhou Dianzi University Hangzhou China Suzhou Research Institute of Shandong University Suzhou China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China School of Biomedical Engineering Medical School Shenzhen University Shenzhen China School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom Department of Mechanical Electrical and Information Engineering Shandong University Weihai China School of Management Hangzhou Dianzi University Hangzhou China Department of Stomatology Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Zeta Technology Co. Ltd. No. 1158 Zhangdong Road Pudong New Area Shanghai China China Academy of Information and Communications Technology Beijing China HangZhou Dianzi University Xiasha Higher Education Zone Hangzhou China Southeast University Sipailou Xuanwu District Nanjing China Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai China School of Computer Science and Technology Changchun University of Science and Technology Changchun China School of Artificial Intelligence Guilin University of Electronic Technology Guilin China University of Science and Technology of China Hefei China Hefei Institutes of Physical Science Chinese Academy of Sciences No. 350 Shushan
Computer-aided design (CAD) tools are increasingly popular in modern dental practice, particularly for treatment planning or comprehensive prognosis evaluation. In particular, the 2D panoramic X-ray image efficiently ... 详细信息
来源: 评论
Coherent H ∞ control for Markovian jump linear quantum systems
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 269-274页
作者: Yanan Liu Daoyi Dong Ian R. Petersen Qing Gao Steven X. Ding Hidehiro Yonezawa School of Engineering and Information Technology University of New South Wales Canberra ACT 2600 Australia Center for Quantum Computation and Communication Technology Australian Research Council Canberra ACT 2600 Australia Institute for Automatic Control and Complex Systems (AKS) University of Duisburg-Essen. 47057 Duisburg Germany Research School of Electrical Energy and Materials Engineering The Australian National University Canberra ACT 2601 Australia School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment Beijing and also with Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing 100191 China
The purpose of this paper is to design a coherent feedback controller for a Markovian jump linear quantum system suffering from a fault signal. The control objective is to bound the effect of the disturbance input on ... 详细信息
来源: 评论
Detection of data injection attack in industrial control system using long short term memory recurrent neural network
Detection of data injection attack in industrial control sys...
收藏 引用
IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Wei Wang Yaobin Xie Lu Ren Xiaodong Zhu Rui Chang Qing Yin State Key Laboratory of Mathematic Engineering and Advanced Computing Zhengzhou China
In 2010, the outbreak of Stuxnet sounded a warning in the field of industrial ***. As the major attack form of Stuxnet, data injection attack is characterized by high concealment and great destructiveness. This paper ... 详细信息
来源: 评论
HPC AI500: A Benchmark Suite for HPC AI Systems  1st
HPC AI500: A Benchmark Suite for HPC AI Systems
收藏 引用
1st International Symposium on Benchmarking, Measuring, and Optimization, Bench 2018
作者: Jiang, Zihan Gao, Wanling Wang, Lei Xiong, Xingwang Zhang, Yuchen Wen, Xu Luo, Chunjie Ye, Hainan Lu, Xiaoyi Zhang, Yunquan Feng, Shengzhong Li, Kenli Xu, Weijia Zhan, Jianfeng State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Dover DE United States Beijing Academy of Frontier Sciences and Technology Beijing China State University of New York Buffalo United States Department of Computer Science and Engineering The Ohio State University Columbus United States National Supercomputing Center in Shenzhen Shenzhen China National Supercomputing Center in Changsha Changsha China National Supercomputing Center in Jinan Jinan China Texas Advanced Computing Center The Texas University at Austin Austin United States
In recent years, with the trend of applying deep learning (DL) in high performance scientific computing, the unique characteristics of emerging DL workloads in HPC raise great challenges in designing, implementing HPC... 详细信息
来源: 评论
KE-GAN: Knowledge Embedded Generative Adversarial Networks for Semi-Supervised Scene Parsing
KE-GAN: Knowledge Embedded Generative Adversarial Networks f...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition
作者: Mengshi Qi Yunhong Wang Jie Qin Annan Li State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beijing Advanced Innovation Center for Big Data and Brain Computing Inception Institute of Artificial Intelligence UAE
In recent years, scene parsing has captured increasing attention in computer vision. Previous works have demonstrated promising performance in this task. However, they mainly utilize holistic features, whilst neglecti...
来源: 评论