咨询与建议

限定检索结果

文献类型

  • 901 篇 期刊文献
  • 128 篇 会议
  • 4 册 图书

馆藏范围

  • 1,033 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 466 篇 物理学
    • 428 篇 数学
    • 190 篇 统计学(可授理学、...
    • 109 篇 化学
    • 101 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 598 篇 工学
    • 208 篇 计算机科学与技术...
    • 157 篇 软件工程
    • 101 篇 材料科学与工程(可...
    • 100 篇 力学(可授工学、理...
    • 81 篇 控制科学与工程
    • 78 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 76 篇 电气工程
    • 71 篇 信息与通信工程
    • 71 篇 生物工程
    • 68 篇 化学工程与技术
    • 59 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 57 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 13 篇 农学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 131 篇 program in appli...
  • 89 篇 program in appli...
  • 63 篇 department of ch...
  • 63 篇 department of ch...
  • 46 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 program in appli...
  • 40 篇 department of ph...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 18 篇 applied mathemat...
  • 16 篇 department of ch...
  • 16 篇 princeton instit...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 33 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 26 篇 jasra ajay
  • 25 篇 s. torquato
  • 24 篇 weinan e
  • 19 篇 car roberto
  • 18 篇 han jiequn
  • 17 篇 emily a. carter
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 981 篇 英文
  • 47 篇 其他
  • 3 篇 中文
检索条件"机构=and Program in Applied and Computational Mathematics"
1033 条 记 录,以下是961-970 订阅
排序:
Exponential acceleration of macroscopic quantum tunneling in a Floquet Ising model
arXiv
收藏 引用
arXiv 2023年
作者: Grattan, George Barton, Brandon A. Feeney, Sean Mossi, Gianni Patnaik, Pratik Sagal, Jacob C. Carr, Lincoln D. Oganesyan, Vadim Kapit, Eliot Quantum Engineering Program Colorado School of Mines 1523 Illinois St CO Golden80401 United States Department of Computer Science Colorado School of Mines 1500 Illinois St CO Golden80401 United States Department of Applied Mathematics and Statistics Colorado School of Mines 1500 Illinois St CO Golden80401 United States Department of Physics Colorado School of Mines 1523 Illinois St CO Golden80401 United States KBR Inc. 601 Jefferson St. HoustonTX77002 United States NASA Ames Research Center Moffett FieldCA94035 United States Department of Physics and Astronomy College of Staten Island CUNY Staten IslandNY10314 United States Physics program and Initiative for the Theoretical Sciences The Graduate Center CUNY New YorkNY10016 United States Center for Computational Quantum Physics Flatiron Institute 162 5th Avenue New YorkNY10010 United States
The exponential suppression of macroscopic quantum tunneling (MQT) in the number of elements to be reconfigured is an essential element of broken symmetry phases. Slow MQT is also a core bottleneck in quantum algorith... 详细信息
来源: 评论
Towards Autonomous Synchrotron Fourier Transform Infrared Microscopy
收藏 引用
Microscopy and Microanalysis 2024年 第SUPPLEMENT_1期30卷
作者: Zwart, Petrus Tas, Neslihan Noack, Marcus Holman, HoiYing Berkeley Synchrotron Infrared Structural Biology Program Lawrence Berkeley National Laboratory Berkeley California USA Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley California USA Center for Advanced Mathematics in Energy Research Applications Lawrence Berkeley National Laboratory Berkeley California USA Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA Applied Mathematics & Computational Research Lawrence Berkeley National Laboratory Berkeley California USA
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Wahid, Kareem A. Dede, Cem El-Habashy, Dina M. Kamel, Serageldin Rooney, Michael K. Khamis, Yomna Abdelaal, Moamen R.A. Ahmed, Sara Corrigan, Kelsey L. Chang, Enoch Dudzinski, Stephanie O. Salzillo, Travis C. McDonald, Brigid A. Mulder, Samuel L. McCullum, Lucas Alakayleh, Qusai Sjogreen, Carlos He, Renjie Mohamed, Abdallah S.R. Lai, Stephen Y. Christodouleas, John P. Schaefer, Andrew J. Naser, Mohamed A. Fuller, Clifton D. Department of Radiation Oncology The University of Texas MD Anderson Cancer HoustonTX United States Department of Imaging Physics The University of Texas MD Anderson Cancer HoustonTX United States Transitional Year Program Corewell Health Wiliam Beaumont Royal OakMI United States Department of Radiation Oncology University of Maryland School of Medicine BaltimoreMD United States Department of Clinical Oncology and Nuclear Medicine Faculty of Medicine Alexandria University Alexandria Egypt UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences Houston United States Department of Radiation Oncology Baylor College of Medicine HoustonTX United States Department of Head and Neck Surgery The University of Texas MD Anderson Cancer HoustonTX United States Elekta AtlantaGA United States Department of Computational Applied Mathematics and Operations Research Rice University HoustonTX United States
Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation r... 详细信息
来源: 评论
Classification of datasets with imputed missing values: does imputation quality matter?
arXiv
收藏 引用
arXiv 2022年
作者: Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Rudd, James H.F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A.D. Tang, Jing Schönlieb, Carola-Bibiane Selby, Ian Breger, Anna Weir-McCall, Jonathan R. Gkrania-Klotsas, Effrossyni Korhonen, Anna Jefferson, Emily Langs, Georg Yang, Guang Prosch, Helmut Preller, Jacobus Stanczuk, Jan Babar, Judith Sánchez, Lorena Escudero Wassin, Marcel Holzer, Markus Walton, Nicholas Research Program in Systems Oncology Faculty of Medicine University of Helsinki Helsinki Finland Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom Data Science & Artificial Intelligence AstraZeneca Cambridge United Kingdom Department of Mathematics University of Manchester Manchester United Kingdom Department of Computer Science and Technology University of Cambridge Cambridge United Kingdom Department of Radiology University of Cambridge Cambridge United Kingdom Clinical Pharmacology & Safety Sciences AstraZeneca Cambridge United Kingdom Department of Medicine University of Cambridge Cambridge United Kingdom Department of Pathology University of Helsinki Helsinki University Hospital Finland iCAN-Digital Precision Cancer Medicine Flagship Helsinki Finland Department of Urology University of Helsinki Helsinki University Hospital Helsinki Finland Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge United Kingdom ZeTeM University of Bremen Bremen Germany Faculty of Mathematics University of Vienna Austria Royal Papworth Hospital Cambridge Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom Addenbrooke’s Hospital Cambridge University Hospitals NHS Trust Cambridge United Kingdom Language Technology Laboratory University of Cambridge Cambridge United Kingdom Population Health and Genomics School of Medicine University of Dundee Dundee United Kingdom Department of Biomedical Imaging and Image-guided Therapy Computational Imaging Research Lab Medical University of Vienna Vienna Austria National Heart and Lung Institute Imperial College London London United Kingdom Contextflow GmbH Vienna Austria Institute of Astronomy University of Cambridge Cambridge United Kingdom
Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using... 详细信息
来源: 评论
Towards Implementation of the Pressure-Regulated, Feedback-Modulated Model of Star Formation in Cosmological Simulations: Methods and Application to TNG
arXiv
收藏 引用
arXiv 2024年
作者: Hassan, Sultan Ostriker, Eve C. Kim, Chang-Goo Bryan, Greg L. Burger, Jan D. Fielding, Drummond B. Forbes, John C. Genel, Shy Hernquist, Lars Jeffreson, Sarah M.R. Motwani, Bhawna Smith, Matthew C. Somerville, Rachel S. Steinwandel, Ulrich P. Teyssier, Romain Center for Cosmology and Particle Physics Department of Physics New York University 726 Broadway New YorkNY10003 United States Center for Computational Astrophysics Flatiron Institute 162 5th Ave New YorkNY10010 United States Department of Physics & Astronomy University of the Western Cape Cape Town7535 South Africa Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Institute for Advanced Study 1 Einstein Drive PrincetonNJ08540 United States Department of Astronomy Columbia University 550 W 120th Street New YorkNY10027 United States Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Str. 1 GarchingD-85748 Germany Department of Astronomy Cornell University IthacaNY14853 United States School of Physical and Chemical Sciences-Te Kura Matū University of Canterbury Private Bag 4800 Christchurch8140 New Zealand Columbia Astrophysics Laboratory Columbia University 550 West 120th Street New YorkNY10027 United States Center for Astrophysics Harvard & Smithsonian 60 Garden Street CambridgeMA United States Program in Applied and Computational Mathematics Princeton University Fine Hall Washington Road PrincetonNJ08544-1000 United States
Traditional star formation subgrid models implemented in cosmological galaxy formation simulations, such as that of Springel & Hernquist (2003, hereafter SH03), employ adjustable parameters to satisfy constraints ... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method
收藏 引用
Joule 2024年 第7期8卷 1958-1981页
作者: Maradesa, Adeleke Py, Baptiste Huang, Jake Lu, Yang Iurilli, Pietro Mrozinski, Aleksander Law, Ho Mei Wang, Yuhao Wang, Zilong Li, Jingwei Xu, Shengjun Meyer, Quentin Liu, Jiapeng Brivio, Claudio Gavrilyuk, Alexander Kobayashi, Kiyoshi Bertei, Antonio Williams, Nicholas J. Zhao, Chuan Danzer, Michael Zic, Mark Wu, Phillip Yrjänä, Ville Pereverzyev, Sergei Chen, Yuhui Weber, André Kalinin, Sergei V. Schmidt, Jan Philipp Tsur, Yoed Boukamp, Bernard A. Zhang, Qiang Gaberšček, Miran O'Hayre, Ryan Ciucci, Francesco Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Hong Kong Metallurgical and Materials Engineering Colorado School of Mines Golden80401 United States Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing China Green Energy Storage Trento38123 Italy Department of Manufacturing and Production Engineering Faculty of Mechanical Engineering and Ship Technology Institute of Machine and Materials Technology Gdańsk University of Technology Gdańsk Poland Electrode Design for Electrochemical Energy Systems University of Bayreuth Bayreuth Germany School of Chemistry University of New South Wales Sydney Australia School of Advanced Energy Sun Yat-Sen University Shenzhen China Sustainable Energy Center CSEM Neuchâtel2002 Switzerland Interdisciplinary Faculty of Science and Engineering Shimane University Matsue Japan Centre for Electronic and Optical Materials National Institute for Materials Science Tsukuba Japan Department of Civil and Industrial Engineering University of Pisa Pisa Italy Department of Materials Imperial College London Exhibition Road LondonSW7 2AZ United Kingdom Department of Chemical Engineering Massachusetts Institute of Technology Cambridge02139 United States Electrical Energy Systems University of Bayreuth Bayreuth Germany Ruder Boskovic Institute Zagreb Croatia Department of Materials and Minerals Resources Engineering National Taipei University Taipei Taiwan Finland Johann Radon Institute for Computational and Applied Mathematics Linz Austria School of Science and Engineering Nanjing Tech. University Nanjing China Karlsruhe Germany Department of Materials Science and Engineering University of Tennessee KnoxvilleTN37996 United States Physical Science Division Pacific Northwest National Laboratory RichlandWA99354 United States Systems Engineering for Electrical Energy Storage University of B
Electrochemical impedance spectroscopy (EIS) is widely used in electrochemistry, energy sciences, biology, and beyond. Analyzing EIS data is crucial, but it often poses challenges because of the numerous possible equi... 详细信息
来源: 评论
Corrigendum: Hyperuniformity variation with quasicrystal local isomorphism class
收藏 引用
Journal of physics. Condensed matter : an Institute of Physics journal 2017年 第47期29卷 2017 Aug 8页
作者: C Lin P J Steinhardt S Torquato Department of Physics Princeton University Princeton NJ 08544 United States of America. Princeton Center for Theoretical Science Princeton University Princeton NJ 08544 United States of America. Department of Chemistry Princeton University Princeton NJ 08544 United States of America. Program of Applied and Computational Mathematics Princeton University Princeton NJ 08544 United States of America. Princeton Institute for the Science and Technology of Materials Princeton University Princeton NJ 08544 United States of America.
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论