投资组合优化问题中的输入参数大多是由历史数据估计而来,估计的不确定性可能对Markowitz投资组合模型产生巨大的影响.近期,一个联合估计与鲁棒性的优化框架(joint estimation and robustness optimization,JERO)被提出,通过结合参数估...
详细信息
投资组合优化问题中的输入参数大多是由历史数据估计而来,估计的不确定性可能对Markowitz投资组合模型产生巨大的影响.近期,一个联合估计与鲁棒性的优化框架(joint estimation and robustness optimization,JERO)被提出,通过结合参数估计和优化问题以减弱估计不确定性对优化问题的影响.JERO框架被应用到投资组合优化领域(JERO with the mean return and the risk(variance)constraints,JERO-MV),同时考量了投资组合模型中有价值的两个度量:投资组合的回报和风险.但该模型可能会导致投资组合过分集中于某几个资产,这将增加投资风险和成本.本文在JERO-MV模型的基础上增加分散化约束,并给出该模型的可行性条件.本文在真实数据集上进行了大量的数值实验,并与JERO-MV模型进行对比.在大多数情形下,我们的模型都有更好的样本外表现.
暂无评论